
Exploring the Implementation of Several Key Slurm Inter-Cluster Features

Stephen Trofinoff

CSCS – Swiss National Supercomputing Centre

Lugano, Switzerland

Email: trofinoff@cscs.ch

Abstract—This paper describes the background and techni-
cal details associated with the exploration of and the implemen-
tation of a couple of new Slurm “inter-cluster” features. These
features would extend some currently available functionality,
such as job-chaining, to cross multiple independent Slurm
clusters or in some cases, such as simultaneous job launch,
add functionality that hitherto has not existed. The use of
these features has been requested from our own users as well
as other Slurm-based HPC labs; however, due to the array of
questions and considerations posed by their various potential
implementations have not yet been realized.

Keywords-Slurm; inter-cluster feature; job-chaining; si-
multaneous job launch; slurmdbd; slurmctld; slurmctld-to-
slurmctld communication

I. INTRODUCTION

Over the course of several years, both at our site (CSCS)

and at others of which we were told, various instances have

arisen where there was a need for some inter-cluster Slurm

[1] features. These features would simplify or in some cases

enable use cases for our various computing facilities and

potentially make administering them easier. One prominent

such request, was for the ability to chain a job to one or more

jobs on a remote Slurm cluster. These features, of course,

do not currently exist or are limited in their scope. For

instance, a job can be submitted to a remote Slurm cluster

but can not be ”chained” to a job on another cluster since one

Slurm cluster’s controller has no knowledge of the jobs of

another. Therefore, after various discussions, it was decided

to start a small project at our site to explore the potential

implementation of some of these features. The project is

a work-in-progress with the aim of creating a working

prototype. This paper and the corresponding presentation

will discuss some of the work done thus far. This includes

specifying the particular features chosen for examination,

some issues related to their implementation and the current

state of the work.

II. EVOLUTION OF THE PROJECT

The first hurdle in this project, as with any project, was

to define the scope; that is what specific features were to

be targeted. With such a term as broad as “inter-cluster

features”, many features and work items could potentially

be included, all valid and useful. However, as this is just

an initial exploratory project and like most sites we need

to balance our personal work loads, we tried to select a

couple of features that were of particular interest to us and,

time-permitting, one or two additional ones that other groups

have expressed interest in. Thus for us, job chaining across

clusters was our primary interest followed by the ability to

simultaneously start jobs on different clusters (this was a

request from a partner site).

The second hurdle was to try to organize the work and

come up with ideas on how to actually implement it. Thus

began a brainstorming phase where we (CSCS), SchedMD

and LLNL shared some ideas on what exactly needed to

be done. As can be imagined, there were multiple ideas;

however, we selected one possible approach and began

attempting to implement it to see how feasible it was.

The underlying idea, was that in order to implement some

of the higher features mentioned above (e.g. job chaining)

the individual Slurm clusters need to be aware of what

specific system (Slurm cluster) a given job id is on. As

the slurmctld is the “brain” of Slurm, containing all the

information regarding jobs currently in the queue and is the

entity in the Slurm system that physically produces the job

id’s, currently it only knows of its own job id’s–not those of

any other Slurm cluster. Therefore, the first technical issue

to implementing these features was how to make clusters

aware of on which cluster a job, with a given job id,

was on. Currently, the job id is simply an unsigned 32-

bit integer. One idea was to introduce a second integer that

could represent the cluster. Although this has the advantage

of leaving the entire original integer (and hence range of

job id’s) open for the cluster’s jobs before wrapping occurs,

it has the serious implementation drawback of necessitating

the rewriting of all code throughout Slurm that deals with

job id’s to be able to process a second integer. This could be

perhaps mitigated somewhat by the use of a single integer

but of twice the size (a 64-bit integer) but this would still

require tracking down code throughout Slurm and potentially

modifying how it handled this value.

In the end, it was decided to retain the single, current-

sized, integer. Instead, it would have some other entity keep

track of where a job was queued (on which system). This,

again, lead to discussions on what methods to try. At one

point, the creation of a new separate daemon that would

be responsible for the creation of the Slurm job id’s and

doling them out to the various clusters was considered. It

would also need to handle queries from the participating



clusters to determine where the job was. However, as some

very early work was pointing out, this role was in some

ways very similar to that of the existing slurmdbd. That is,

it is an independent Slurm daemon that handles requests

from various Slurm clusters at various key points during

the job life-cycle (the Slurmdbd also handles requests from

the the administrator and users via the sacct and sacctmgr

commands). Therefore, it seemed natural to use it since

it already had been designed to handle high volumes of

communication from multiple clusters. It is also an optional

Slurm entity and thus any job id feature based upon it should

also be designed to be optional (something configurable, for

instance, in the slurmdbd.conf file).

Once this decision was made there was the decision of

which distribution scheme to use for the job id’s. That is,

should a cluster make a request to the slurmdbd EACH time

it creates a job? Should each cluster be allocated a subrange

of job id’s, etc.? At first, we tried the latter. Again, there were

different methods of implementation and choices along the

way that could be made, each with their inherent benefits

and drawbacks. As we were going to set aside a block of

consecutive job id’s for a given cluster and, at first, it was

assumed that there could be an arbitrary number of clusters

participating in this scheme we needed a methodology to

divy the ranges. Since the feature for specifying min/max

job id’s already existed in Slurm, one idea tried early on was

to have each cluster inform the slurmdbd, upon registration,

what job id range it would like to use. On the one hand

this would simplify some aspects of the design because it

would mean that the slurmdbd would not need to have some

sort of algorithm to determine the appropriate range size of

job ids for a given cluster. However, it would mean that

the slurmdbd would still need to receive the REQUESTED

range from each cluster and then verify that there were no

overlaps. Then, during its normal response to the cluster, it

would inform it if it had a valid range or not. This, obviously,

places the burden upon the system administrators or whoever

configures Slurm on each cluster to ensure that they use

proper ranges. It requires new information to be piggybacked

on the registration request (job id range values) and required

validation information. This code was actually implemented

and did work but after more discussion it seemed that there

were other and better methods of handling this issue. It

also should be noted that with this method, there was a

choice of whether to simply have a cluster blocked from

using any inter-cluster feature if its range had an overlap or

to add further logic to the slurmdbd to then correct an

overlapped range, possibly truncating it or granting entirely

different start and end points (all of which would, of course,

be returned during the response).

The method preferred at the time by SchedMD was

to have the controllers request, for each job, the job id

to use. This has the advantage of the fact that there is

already communication between the cluster’s controller and

the slurmdbd for each job and so this information could be

potentially piggybacked. This method does, however, require

a cluster to query the slurmdbd for job id’s for which it

needs information but is not aware of itself, just as in the

other method. As this could lead to job ids being on random

clusters, it would necessitate that a cluster almost always

need to query the slurmdbd to find information about a job.

In the end, it was decided to go with a sort of hybrid

approach where we would distinguish between a “normal”

job with a locally generated job id and that of a special

inter-cluster job with a job id generated by the slurmdbd.

This would be done by use of a special reserve range of job

id’s for inter-cluster jobs such as all low job id’s up to a

certain threshold or, viceversa, all jobs above a certain job

id threshold. For any job not within the reserved range, the

local Slurm cluster controller would handle it as it normally

would. That is, it would generate it in the same fashion and

use all the same internal logic as it always had. However, for

jobs within the special reserved range, they would receive

their job id ultimately from the slurmdbd. In essence,

this creates a second type of job as these jobs would be

“visible” to other clusters because a cluster would know,

inherently, that a job id was an inter-cluster job by virtue

of the id itself. If it didn’t have a job record for it, then

it knows that it must obtain the location of the job from

the slurmdbd which would then pass back the contact

details of the controller for the cluster on which the job is

running. It would still necessitate that the clusters contact

the slurmdbd for queries regarding some jobs, but only

inter-cluster jobs and only those not on its own cluster.

One of the implementation details that actually was com-

mon to most of these schemes including the latest was that

the slurmdbd would maintain a new data structure. This

structure would contain all the necessary controller contact

information for each cluster of the grid. This currently

consists of a hostname (in the form of an IP address

string and a port number). With each of these it would

associate the cluster name as a key index for table lookup.

Additionally, in the earlier rendition where the clusters each

requested specific ranges, the Slurmdbd would maintain

range information (i.e. start/end values). Obviously, the latest

approach was more efficient in this point, as well, as it no

longer needed these fields.

One side question regarded how to handle clusters being

added and dropped; that is, a dynamic set of participating

clusters. This is a problem common to all of the afore-

scribed methods. However, after discussions with SchedMD,

it became clear that what was being envisioned was a more

“static” set of clusters–a “grid” of clusters. Therefore, for

the time being and the purpose of this paper, it will be

assumed that we have a static grid with minimal changes

in member states (registered/non-registered). It should be

noted that although this issue does not affect the current

design nearly as much as it had the design with distinct

2



job id ranges or designs with arbitrary clusters joining and

leaving, there could still be some issues such as what to do

if a cluster requests the location of a job only to learn that

it is on a cluster that is currently down.

At this point, we had a basic scheme of enabling job

id’s, at least a select set of them, to be visible to multiple

clusters and, more importantly, to be unique across all of

them. This then laid the foundation for the implementation

of the next phase of the work; that is, the chaining of jobs

across clusters. Obviously, this involved numerous coding

changes and again more decisions and choices but, with the

groundwork laid out with the job id’s above, it became much

more straight-forward. Esssentially, the code that initially

created the dependency field in the job record during its

creation and the code to check if it were still unsatisi-

fied had to be modified (update_job_dependency,

test_job_dependency). These functions would handle

normal job id’s as they traditionally would but for inter-

cluster job ids, if the record didn’t exist on the local cluster

it would contact the slurmdbd for its location and then

communicate with the appropriate foreign controller to find

out the status of the job. It should be noted that for an

inter-cluster job id where the local slurmctld has a

job_record for it, it would be handled as if it were a

regular job.

III. CURRENT STATE

Currently, we have a basic implementation of the common

job id range scheme and of inter-cluster job chaining. The

code has undergone some basic function testing but would

need to be further developed and refined in some areas to

ensure that it would be robust enough for production use.

Although a number of changes, both large and small,

had to be made to many different files, the API for the

functionality, thus far implemented, was kept as simple as

possible.

The slurmdbd’s configuration file has the added option

interClusterJobIdStart. This is an unsigned 32-bit

integer that denotes the start of the inter-cluster job id range.

The slurmctld’s configuration file now contains

GridClusters and ClusterIDMode. The former is

a list of Slurm cluster names participating in the grid.

The latter simply indicates whether or not the cluster will

participate in the grid; thus, providing the option to the

administrator of whether to use the cluster in the grid or

by itself as it traditionally would.

From the user perspective, thus far, the use model is

perhaps even simpler still. In it, the user will identify,

from the start by using the --sicp clause, whether a job

should be a potential target of a remote job. This newly

added clause to both the sbatch and salloc commands

indicates to the Slurm system that it should receive a job

id from the special reserved range. Other than this, the job

is a normal job. However, now the user can, on another

system (or the current one although that would be nothing

new), specify a dependence upon this job id and have the

remote job correctly target this original inter-cluster job.

Note that the dependent job may also be an inter-cluster

job for further job chaining across clusters. There is no

change to the dependency syntax. The user still specifies

a clause such as --dependency=afterok:[job id].

The only difference is that the job id would be from the

reserved range and, thus, typically is much larger than other

job ids.

In terms of which dependencies would be enabled

for inter-cluster use, after, afterany, afterok and

afternotok may be used. The singleton and expand

dependency types were not implemented as it may not be

needed nor make much sense (e.g. trying to “expand” a job’s

resources across clusters).

IV. IMPLEMENTATION DETAILS

The creation of the common job id range involved pri-

marily modifications to the slurmctld and slurmdbd

code with some additional minor modifications to some

commands such as sbatch and salloc which needed to

have the new option --sicp added. Conceptually, the logic

flow is that a slurmctld, having been configured as a

participating member of a Slurm grid, sends a message to the

slurmdbd with its contact information. The slurmdbd

then adds this contact information to a table stored in its

internal memory and then returns this table along with

an integer denoting the starting point of the common job

id range (all job ids greater than or equal to this are

in the reserved range) to the requesting cluster and all

other participating clusters that are currently up. Thus, each

slurmctld needs to be able to receive this update not only

after it sends its own request but at arbitrary times afterwards

as the clusters will not come online all at once. With this

done, the slurmdbd and the respective controllers maintain

a consistent table of Slurm cluster contact information and

a consistent starting point of the common job id range.

Next, when a job on a specific cluster is being created with

the option to run as an inter-cluster job, its slurmctld

contacts the slurmdbd for the next job id in the common

range instead of taking the next job id in its own normal local

range. The _set_job_id function was thus modified to

send the request to the slurmdbd for an inter-cluster job

id when the user requests the job to be using --sicp. The

slurmdbd upon receiving this message then picks the next

inter-cluster job id and creates an entry in another table in

its internal memory. This table correlates the job id with a

given cluster name for future lookup. The slurmdbd then

sends a message back to the requesting slurmctld with

the new job id.

When another job is being created, for instance on a

second Slurm cluster (ClusterB), which has a dependence

upon the previously created inter-cluster job queued on the

3



first Slurm cluster (ClusterA), the slurmctld of ClusterB

sends a message to the slurmdbd to find out on which

cluster the remote target is running. (Note: It does this only

if it does not have a record for the job itself, in which

case the inter-cluster job would be local and there would

be no need for any special processing). The slurmdbd

looks the job id up in its table of used inter-cluster job

ids and retrieves the cluster name on which it was queued.

Then it determines at which index this cluster is at in the

grid table and sends a response message with this single

integer, the index, back to the requesting slurmctld. At

this point, the slurmctld of ClusterB uses this index to

retrieve the contact information from its own local copy

of the grid table and stores this information directly in the

dependency structure of the job record corresponding to the

dependent job. In this way, each time the scheduling cycle

comes to testing this job’s dependencies, it will have the

contact information readily available so that it can directly

contact the appropriate foreign controller. At such time, the

slurmctld of ClusterB would contact the slurmctld

of ClusterA requesting the status of the target job. ClusterA

returns the status which is a simple integer. ClusterB then

places this value in a dummy job record so that it could

pass through all of the same logic as it normally would (the

same internal test macros). Thus, from this point through

the end of the scheduling cycle, the traditional logic is used.

For instance, if an afterok dependency type was used and

the status is a successful completion, the dependency would

be removed and the job would be eligible to run (barring

any other dependencies that still may exist). Likewise, if the

target failed or was cancelled then the dependent job would

be cancelled as its dependency was unfullfilled. It should be

noted that this style of notification of the status of the foreign

job is a “pull”-style and not a “push”-style request. This

means that when a target job completes, it does not notify

all possible controllers of this fact but simply is handled as it

typically would with its state being updated. As the foreign

dependent jobs from the various remote clusters come to the

point of checking their dependencies, then they contact the

target’s controller for the information. Thus, in this scheme,

there is often a delay between when a target completes and

when the corresponding changes in foreign dependencies

result. This is typically under a minute in testing due to

the frequency of the scheduling cycle.

(See Figure 1 for a schematic representation of the im-

plementation.)

V. OPEN QUESTIONS AND OTHER TO-DO’S (A PARTIAL

LIST)

One open question is what to do if the foreign job record

is already expunged from its controller when a remote

dependent job tries to test its dependency by contacting

the foreign controller for the status of the target job. If the

job record has already been expunged, then this currently is

treated as if it had failed (just for the purposes of the re-

motely dependent job). Thus, if there had been an afterok

job dependency, it would be cancelled thinking that the

target had failed. Likewise, an afternotok dependent job,

would be incorrectly launched. Should a counter be added to

a slurmctld’s job record of how many foreign jobs may

be dependent upon it? Should we add such a counter to the

slurmdbd’s data structure instead? For instance, in both

of these cases, there could be a field in the corresponding

record, initialized to zero and then incremented once for

each job that claims a dependence upon it. As these jobs

complete, the counter could be then decremented. Once the

counter reaches zero, the record could then be cleared out of

memory. Using the counter approach with the records being

stored in the slurmdbd would seem to be the preferred of

these two variants as all the clusters already communicate

job completion status to the slurmdbd. Furthermore, it

would allow the slurmctld on each cluster to follow its

existing logic when it comes to handling its job_records

(which are already quite large and complex).

A still better approach, perhaps, would be simply to have

the foreign controller, once contacted for the status of one

of its inter-cluster jobs that has already been expunged,

contact the slurmdbd itself for the status. At that point, the

slurmdbd could either check its own table of inter-cluster

jobs for a status value (if the status were to be added) or

simply query the database and pass back the result. This

would have the advantage of already communicating with

the database in which such information is stored indefinitely

(the basic purpose of the database). The downside would be

if there were many such requests due to there existing many

dependent jobs that didn’t request the status until after the

expunging of the controller’s record, this could then cause

significant overhead.

In the end, how often this would occur would depend upon

various conditions such as the configuration of the various

clusters (how long it retains job records after completion),

Figure 1. Idle vs Busy timings for the SUMMARY and INVENTORY

methods on the 8-node TDS.

4



the size of the workloads across the various systems and use

patterns (e.g. how many jobs are being chained) amongst

other things.

As stated, the slurmdbd needs to keep track of inter-

cluster job id’s in use. However, this raises the question of

how long should it retain this information? This is, in some

ways, related to the question of what to do about job records

for remote targets that have already been expunged as, if we

use this record as a potential back up, it would need to persist

for longer. Then there would exist the same issues, such as,

should it simply be removed after a set amount of time after

job completion, or should it possibly have a counter? As job

id wrapping wasn’t explicitly handled yet with this new type

of job id (Slurm does handle it for the traditional scheme)

perhaps records could be removed once wrapping is detected

although this would seem undesirable.

With regard to the dependency records of remote target

jobs, if there is more than one job for the given type of

dependency and it is not on the same remote target cluster,

then this would potentially fail as it currently wasn’t taken

into account. Perhaps the solution here would be to have the

dependency record store a list of contact information such

that the order of the entries would correspond to the order

of the remote target job ids associated with that dependency

type.

Another current limitation is that the slurmdbd must be

started before all participating clusters. The order of the start

up of the clusters is not important but if the slurmdbd is

started after any of them, those clusters that began before it

will not be seen as part of the grid.

Similarily, nothing is specifically done in the event that

a cluster goes down nor is the contact information for the

backup controllers currently stored.

The slurmdbd’s grid table has a maximum size that is

currently hard-coded and unchangeable. This needs to be

changed so that it can expand the table as the number of

cluster registrations increases beyond the current size.

In addition to the various open questions stated above

there are still other parts of the original project remaining

to be implemented. This includes the simultaneous job

launch feature as well as some updates to several commands

such as squeue and scontrol to show inter-cluster job

information.

On a final note, the current work is based upon the now

outdated Slurm version 2.5.4 as the project had initially

started before version 14.03.x was released. Thus, the work

should be ported to a newer version of the Slurm code for

greater relevance.

VI. CONCLUSION

Due to multiple requests for job-chaining across clusters

and other new inter-cluster features currently not available

in Slurm, a project was started to explore some possible

implementations. Although still a work-in-progress, a basic

prototype has been produced that successfully demonstrates

that it is possible to do at least job-chaining between clusters.

In doing this, some key design points have already been

addressed such as how to implement a mechanism for

allowing one Slurm cluster to recognize the job id’s of

another Slurm cluster.

Having reached this point, the project aims to further

enhance and refine the current modifications and to continue

to explore the additional functionality, such as simultaneous

job launch, cited in the original proposal.

VII. GLOSSARY

• cluster: A Slurm cluster.

• foreign controller: A slurmctld (control daemon)

for another Slurm cluster external to the one in ques-

tion.

• grid: A fixed and predefined set of independent Slurm

clusters that will be able to use the various new inter-

cluster features described in this paper.

• inter-cluster feature: Features in Slurm functionality

that are designed to work across different independent

Slurm clusters.

• SICP: Acronym for CSCS’s project to explore the

implementation of various Slurm inter-cluster features.

(Slurm Inter-Cluster Project) Currently used as the

identifier for the new sbatch and salloc option to

specify that a job should be designated an inter-cluster

job.

ACKNOWLEDGMENT

Thanks to Moe Jette, Danny Auble and the rest of the

team at SchedMD as well as Don Lipari of LLNL for their

collaboration.

REFERENCES

[1] [Online]. Available: http://www.schedmd.com/

5


