
Slurm Inter-Cluster Project
Stephen Trofinoff
CSCS
Via Trevano 131
CH-6900 Lugano
24-September-2014

Definition

 Functionality pertaining to operations spanning different clusters is what this
project refers to as “inter-cluster” features

 Slurm primarily operates on a per-cluster basis
• The slurmctld is the “brain” of the system for each “cluster”

 These features are currently limited in Slurm
• Notable example is the “-M” option to several commands such as

sbatch

 The aim of this project is to explore some possible implementations of some
such features.

Background

 Several pairs of systems where we have the main job on one system and the
“post-processing” job on the other (job-chaining would be useful)
• Rosa/Julier
• Daint/Pilatus
• Albis/Lema

 Partner site requesting the ability to simultaneously start jobs
 Slurm community has spoken about this and related topics off and on for

some time

Background (cont.)

 Proposed a local site project to explore some ideas here at CSCS--initial
tentative goals of the project:

1. Implement job chaining across clusters
2. Enhance commands like squeue and scontrol to display foreign

jobs
• This can currently be done only if the user knows which system the

job is on
3. Implement a means of launching jobs on separate clusters

simultaneously
• A partner site wants this for streaming output from the first job to

the second.
4. Enhance the current feature of submitting a job to multiple clusters

• Currently, the decision on which it would run first is made only
once

• It would beneficial if this decision could be made repeatedly over
time.

Background (cont.)

 Discussed/exchanged ideas with SchedMD and LLNL
 After several evolutions agreed upon a general scheme for having common

job id’s—at least some things to try
• This is a base feature that will be needed by all of the higher-level

functionality to come.
 Further refined tentative goals of the project

Some Considerations

 Need method to determine on which cluster a job with a given id is queued
 Using a single reserved range of job id’s
 Maintain a relatively static set or grid of participating Slurm clusters
 All clusters of the grid will recognize and honor this range
 For a reserved job id, if a cluster does not have a corresponding job record it

will contact the slurmdbd for the cluster which does

 User will designate a job as a potential inter-cluster target by use of a
command-line option

 Dependencies will be created using existing Slurm syntax

API

 System Administrator
• interClusterJobIdStart: Denotes first job of reserved inter-cluster job

range (slurmdbd.conf)
• GridClusters: List of names of Slurm clusters that can participate in the

inter-cluster grid (slurmctld.conf)
• ClusterIDMode: Set to “1” to indicate that cluster will participate in the

grid (slurmctld.conf)
 User

• Specifies “--sicp” option on sbatch or salloc command line

• Uses normal dependency clause syntax

API Example

 System Administrator edits the slurmctld.conf to list “ClusterA” and

“ClusterB” (on both clusters) as part of the grid and that each will participate.
Also edits slurmdbd.conf specifying the start of the inter-cluster job id range
to start as 500000

 [slurmctld.conf]

 …

 ClusterIDMode=1

 GridClusters=“ClusterA,ClusterB”

 …
[slurmdbd.conf]

 …
 InterClusterJobIdStart=500000

 …

 User starts a target job on ClusterA and a dependent job on ClusterB
 ClusterA: $ sbatch --sicp ajob.sh
 ClusterB: $ sbatch --dependency=afterok:500000

bjob.sh

Implementation (cont.)

 Use the existing slurmdbd daemon to perform a few central activities

 However, attempt to keep communication directly between controllers (as
much as possible)

 The following Slurm entities needed to be modified
• slurmdbd

• slurmctld

• Commands:
o sbatch

o salloc

Implementation (slurmdbd--Data)

 Stores a “grid table” correlating cluster names with the contact information of
the controller
• IP address
• Port number

 Stores the starting point, first job id, of reserved range of inter-cluster id’s
 Stores table correlating used inter-cluster job id’s and the cluster to which

they were assigned

Implementation (slurmdbd--Comm’s.)

 Receives “registration” request from cluster controllers
• Add entry to its grid table for the cluster
• Returns this updated grid cluster to ALL currently up clusters
• Returns the starting point of the reserved range

 Receives request for new inter-cluster job id
• Picks the next id from range
• Creates an entry in its used job id table
• Returns the job id to the requesting cluster

 Receives request for index of cluster where an inter-cluster job id is queued
• Finds and returns this index

Implementation (slurmctld--Data)

 Stores value indicating if the cluster is in inter-cluster mode
 Cutoff for reserved inter-cluster job id range (received from slurmdbd)
 Stores local copy of the grid table (same as the slurmdbd)

Implementation (slurmctld--Comm’s.)

 Sends the three messages to the slurmdbd already cited

• “registration” request of cluster
• Request for new inter-cluster job id
• Request for index of cluster where an inter-cluster job id is queued

 Sends message to foreign controller requesting status of a given inter-cluster
job

Implementation (slurmctld)

slurmdbd slurmctld
ClusterA

t1: cluster registration

t1b: response (range start and grid table)

t2b: request a IC job id ($ sbatch –sicp ajob.sh)

t2c: response w/next IC job id (e.g. 500000)

slurmctld
ClusterB

t3: cluster registration

t3b: response (range
start and updated
grid table)

User (shell)

t2: $ sbatch –sicp ajob.sh

t2d: next ic job id (e.g. 500000)

t4: $ sbatch –
dependency=afterok:
500000 bjob.sh

t4b: request index of
cluster with IC target
(i.e. 500000)

t4c: response with cluster index

t4d: next job id (normal job
id—e.g. 1234)

tn & tnb: ic job state
req & response

Open Questions and Other To-do’s

 What should be done for the status if the job record for the remote target job
has already been expunged by its controller?
• Should a counter be added to the slurmctld’s job_record?
• Should a counter be added to the slurmdbd’s table of used inter-

cluster job id’s? (Have dependent controller always contact slurmdbd for
status?)

• Should we have target controller contact slurmdbd if its record is

already expunged?
o Again, should the slurmdbd store the status in its i.c. job id table?

o Or should it simply query the DB at this point?

Open Questions and Other To-do’s

 How long should the slurmdbd retain its used inter-cluster job id records?

• Should there be a counter?
• Should it occur when job id wrapping occurs?
• Should it simply be after a certain fix amount of time (configurable in the

slurmdbd.conf)?
 Currently, the slurmdbd must always be started before all slurmctld’s

for the grid to work properly. This limitation should be removed.
 Doesn’t explicitly handle backup controllers
 What happens if a dependency type has multiple remote jobs on different

clusters? (Needs to be tested)
 Miscellaneous pieces of the code still need to be fully developed and refined.
 Need to port initial work to newer version of Slurm—currently using old 2.5.4
 Other parts of the original work proposal still need to be explored.

Discussion

© CSCS 2014 17

Stephen Trofinoff: stephen.trofinoff@cscs.ch

