

# Adaptive Resource and Job Management for limited power consumption

23/09/14

Yiannis Georgiou **David Glesser** Matthieu Hautreux Denis Trystram

- Introduction
- DVFS & Switch-off
- The model
- Algorithm and implementation
- Experimentations



# Introduction

- DVFS & Switch-off
- The model
- Algorithm and implementation
- Experimentations



# Powercap: limit the power consumption during a certain amount of time

- Why control?
  - Power peak = O(power of a city)
  - Power installations lifetime
  - Electricity providers limitations
  - Controling energy consumption = Controling cost

- How control?
  - DVFS
  - Switch-off
    - (or shutdown, or sleep mode, or hibernation...)

- Introduction
- DVFS & Switch-off
- The model
- Algorithm and implementation
- Experimentations



#### • Switch-off

- Switch-off some resources
- switched-off has a cost
- Not possible on all clusters
- Jobs can not run on switched-off nodes!

- « Power Bonuses »
  - If all components of a level are switched-off, the component of the upper level can be switched-off and provide an additional gain

- Exemples :
- Nodes are made of processors
- Chassis are made of nodes
- Rack are made of Chassis



- « Power Bonuses » on CURIE cluster:
  - 18 nodes per chassis, 5 chassis per rack
  - Power gained by switching off a **Chassis**

~= Power(**computing node**)

Power gained by switching off a Rack

~= **10** \* Power(**computing node**)



#### • DVFS

- It's a trade-off between performance and power consumption
- What about **performance** / **energy** trade-off ?

 $\int POWER.dt = Energy$ 

#### • DVFS

- It's a trade-off between performance and power consumption
- What about **performance** / **energy** trade-off?



#### • DVFS

- It's a trade-off between performance and power consumption
- What about **performance** / **energy** trade-off?



 DVFS is a trade-off between completion time and power

#### No obvious performance / energy trade-off

- Minimizing power != minimizing energy
- The impact of DVFS is highly dependant on the job

- Introduction
- DVFS & Switch-off
- The model
- Algorithm and implementation
- Experimentations



Our Model

- We work with maximum power consumptions
- *W* is the maximal computational work possible

$$W = T.\left(\frac{N - N_{off} - N_{dvfs}}{\sigma_{Max}} + \frac{N_{dvfs}}{\sigma_{Min}}\right)$$

• Powercap limitation

$$N_{off}.P_{off} + N_{dvfs}.P_{Min} + (N - N_{off} - N_{dvfs}).P_{Max} \le P$$

$$N_{X}$$
 = number of node in state X  
 $\Sigma_{Z}$  = speed degradation at state Z  
 $P_{Y}$  = power consumption at Y  
 $P$  = powercap

• In the space 3D (N<sub>dvfs</sub>, N<sub>off</sub>, W)  $W = T.\left(\frac{N - N_{off} - N_{dvfs}}{\sigma_{Max}} + \frac{N_{dvfs}}{\sigma_{Min}}\right)$  is a plane

 $\begin{array}{l} N_{off}.P_{off} + N_{dvfs}.P_{Min} + \\ (N - N_{off} - N_{dvfs}).P_{Max} \leq P \end{array} \quad \text{is an half space} \end{array}$ 

⇒ The intersection is a straight line

• Within the bound of the total number of nodes, W is maximized when:

$$\begin{cases} N_{off} = \frac{P - N \cdot P_{Max}}{P_{off} - P_{Max}} \\ N_{dvfs} = 0 \end{cases} \quad \text{or} \quad \begin{cases} N_{off} = 0 \\ N_{dvfs} = \frac{P - N \cdot P_{Max}}{P_{Min} - P_{Max}} \end{cases}$$

• 3 cases:

# – DVFS is better $\Rightarrow$ we only use DVFS

Switch-off is better ⇒ we only use
 Switch-off

The powercap is so low that we should use both

$$\begin{cases} N_{off} = \frac{P - N.P_{Max}}{P_{off} - P_{Max}} & \text{or} \\ N_{dvfs} = 0 \end{cases} \quad \text{or} \quad \begin{cases} N_{off} = 0 \\ N_{dvfs} = \frac{P - N.P_{Max}}{P_{Min} - P_{Max}} \end{cases}$$

How to choose ?

$$\rho = 1 - \frac{\sigma_{Max}}{\sigma_{Min}} - \frac{P_{Max} - P_{dvfs}}{P_{max} - P_{off}}$$

When  $\rho < 0$ , switch-off is prefered

#### • On CURIE cluster:

| Benchmark         | Degradation | ρ      | Best<br>mechanism |
|-------------------|-------------|--------|-------------------|
| NA                | 2.27        | 0      | -                 |
| linpack           | 2.14        | -0.027 | Switch-off        |
| IMB               | 2.13        | -0.029 | Switch-off        |
| SPEC Float [11]   | 1.89        | -0.088 | Switch-off        |
| SPEC Integer [11] | 1.74        | -0.134 | Switch-off        |
| Common value [22] | 1.63        | -0.174 | Switch-off        |
| NAS suite [11]    | 1.5         | -0.225 | Switch-off        |
| STREAM            | 1.26        | -0.350 | Switch-off        |
| GROMACS           | 1.16        | -0.422 | Switch-off        |

Fig. 5: Comparison between DVFS and switch-off in Curie for various benchmarks.

- Introduction
- DVFS & Switch-off
- The model
- Algorithm and implementation
- Experimentations



- When a powercap limit is set
- Choose between DVFS and switch-off

- If DVFS
  - When a job is being launched,
  - Try to schedule it at the highest frequency
- If switch-off
  - switch-off nodes at runtime,
  - mark these nodes as « reserved » for the scheduler

\$ scontrol create res Watts=123151 ...



- Introduction
- DVFS & Switch-off
- The model
- Algorithm and implementation
- Experimentations



- Replay interesting parts of the CURIE workload
  - 5 hours, high utilization, jobs representative of the whole workload
- Slurm can emulate his environement
  - 336 Slurm nodes on 1 physical node
  - *Sleep* instead of real computational jobs
- Add a powercap
  - Case study: 1 hour, in the middle of the trace, at different powers

#### Experimental validation



Fig. 7: System utilization for the IDLE, DVFS and SHUT policies in terms of cores (up) and power (bottom) during the 5 hours workload with a reservation of 60% of total powercap



© Bull, 2014

#### Experimental validation



DVFS

- Introduction
- DVFS & Switch-off
- The model
- Algorithm and implementation
- Experimentations



- Powercap on live power values
  - Implemented using Layouts
- Powercap on nodes
- DVFS
  - What about reproducibility of jobs runs?
  - To do DVFS right, we need to know the job
- Switch-off
  - New scheduling algorithms
  - Switch-off (with bonuses) whithout powercaps
  - Switch-off particular components (cpus, gpus, network...)



# Architect of an Open World™

References

 [11] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L. Rountree, and M. E. Femal, "Analyzing the energy-time trade-off in high-performance computing applications," IEEE Transactions on Parallel and Distributed Systems, 2007.

 [22] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, "BSLD threshold driven power management policy for HPC centers," in 2010 IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010.



Fig. 8: Comparison of different scenarios of policies and powercaps based on normalized values of launched jobs, accumulated cpu time and total consumed energy during the 5 hours workload interval