

Architect of an Open World"

Adaptive Resource and Job Management for limited power consumption

Yiannis Georgiou David Glesser Matthieu Hautreux Denis Trystram

- Introduction
- DVFS \& Switch-off
- The model
- Algorithm and implementation
- Experimentations
- Conclusion and future works

- Introduction

- DVFS \& Switch-off
- The model
- Algorithm and implementation
- Experimentations
-Conclusion and future works

Powercap: limit the power consumption during a certain amount of time

Introduction - Energy

- Why control?
- Power peak $=O$ (power of a city)
- Power installations lifetime
- Electricity providers limitations
- Controling energy consumption $=$ Controling cost
- How control?
- DVFS
- Switch-off
- (or shutdown, or sleep mode, or hibernation...)
-Introduction
- DVFS \& Switch-off
- The model
- Algorithm and implementation
- Experimentations
-Conclusion and future works

The RJMS level - Switch-off

- Switch-off
- Switch-off some resources
- switched-off has a cost
- Not possible on all clusters
- Jobs can not run on switched-off nodes!
- < Power Bonuses »
- If all components of a level are switched-off, the component of the upper level can be switched-off and provide an additional gain
- Exemples:
- Nodes are made of processors
- Chassis are made of nodes
- Rack are made of Chassis

- < Power Bonuses » on CURIE cluster:
- 18 nodes per chassis, 5 chassis per rack
- Power gained by switching off a Chassis

$$
\sim=\text { Power(computing node) }
$$

- Power gained by switching off a Rack

$$
\sim=10 * \text { Power(computing node) }
$$

The RJMS level - DVFS

- DVFS
- It's a trade-off between performance and power consumption
- What about performance / energy trade-off ?

$$
\int P O W E R . d t=\text { Energy }
$$

The RJMS level - DVFS

- DVFS
- It's a trade-off between performance and power consumption
- What about performance / energy trade-off?

- DVFS
- It's a trade-off between performance and power consumption
- What about performance / energy trade-off?

The RJMS level - DVFS

- DVFS is a trade-off between completion time and power
- No obvious performance / energy trade-off
- Minimizing power != minimizing energy
- The impact of DVFS is highly dependant on the job
- Introduction
- DVFS \& Switch-off
- The model
- Algorithm and implementation
- Experimentations
- Conclusion and future works
- We work with maximum power consumptions
- W is the maximal computational work possible

$$
W=T \cdot\left(\frac{N-N_{o f f}-N_{d v f s}}{\sigma_{M a x}}+\frac{N_{d v f s}}{\sigma_{M i n}}\right)
$$

- Powercap limitation
$N_{o f f} . P_{o f f}+N_{d v f s} . P_{M i n}+$
$\left(N-N_{o f f}-N_{d v f s}\right) . P_{M a x} \leq P$
$N_{X}=$ number of node in state X
$\Sigma_{Z}=$ speed degradation at state Z
$P_{Y}=$ power consumptionat Y
$P=$ powercap

Our model

- In the space $3 \mathrm{D}\left(\mathrm{N}_{\text {dvfs }}, \mathrm{N}_{\text {off, }}, \mathrm{W}\right)$

$$
W=T \cdot\left(\frac{N-N_{o f f}-N_{d v f s}}{\sigma_{M a x}}+\frac{N_{d v f s}}{\sigma_{M i n}}\right) \quad \text { is a plane }
$$

$N_{o f f} . P_{o f f}+N_{d v f s} . P_{M i n}+$
$\left(N-N_{o f f}-N_{d v f s}\right) \cdot P_{M a x} \leq P$
is an half space
\Rightarrow The intersection is a straight line

- Within the bound of the total number of nodes, W is maximized when:

$$
\left\{\begin{array} { l }
{ N _ { o f f } = \frac { P - N . P _ { M a x } } { P _ { o f f } - P _ { M a x } } } \\
{ N _ { d v f s } = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
N_{o f f}=0 \\
N_{d v f s}=\frac{P-N . P_{M a x}}{P_{M i n}-P_{M a x}}
\end{array}\right.\right.
$$

- 3 cases:
- DVFS is better \Rightarrow we only use DVFS
- Switch-off is better \Rightarrow we only use Switch-off
- The powercap is so low that we should use both

Our model - switch-off or DVFS?

$$
\left\{\begin{array} { l }
{ N _ { o f f } = \frac { P - N \cdot P _ { M a x } } { P _ { o f f } - P _ { M a x } } } \\
{ N _ { d v f s } = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
N_{o f f}=0 \\
N_{d v f s}=\frac{P-N . P_{M a x}}{P_{M i n}-P_{M a x}}
\end{array}\right.\right.
$$

How to choose?

$$
\rho=1-\frac{\sigma_{M a x}}{\sigma_{M i n}}-\frac{P_{M a x}-P_{d v f s}}{P_{\max }-P_{o f f}}
$$

When $\rho<0$, switch-off is prefered

Our Model - DVFS or switch-off?

- On CURIE cluster:

Benchmark	Degradation	ρ	Best mechanism
$N A$	2.27	0	-
linpack	2.14	-0.027	Switch-off
IMB	2.13	-0.029	Switch-off
SPEC Float [11]	1.89	-0.088	Switch-off
SPEC Integer [11]	1.74	-0.134	Switch-off
Common value [22]	1.63	-0.174	Switch-off
NAS suite [11]	1.5	-0.225	Switch-off
STREAM	1.26	-0.350	Switch-off
GROMACS	1.16	-0.422	Switch-off

Fig. 5: Comparison between DVFS and switch-off in Curie for various benchmarks.

- Introduction
- DVFS \& Switch-off
- The model
- Algorithm and implementation
- Experimentations
-Conclusion and future works

The algorithm

- When a powercap limit is set
- Choose between DVFS and switch-off
- If DVFS
- When a job is being launched,
- Try to schedule it at the highest frequency
- If switch-off
- switch-off nodes at runtime,
- mark these nodes as < reserved» for the scheduler

The algorithm

\$ scontrol create res Watts=123151 ...

- Introduction
- DVFS \& Switch-off
- The model
- Algorithm and implementation
- Experimentations
-Conclusion and future works
- Replay interesting parts of the CURIE workload
- 5 hours, high utilization, jobs representative of the whole workload
- Slurm can emulate his environement
- 336 Slurm nodes on 1 physical node
- Sleep instead of real computational jobs
- Add a powercap
- Case study: 1 hour, in the middle of the trace, at different powers

Experimental validation

Fig. 7: System utilization for the IDLE, DVFS and SHUT policies in terms of cores (up) and power (bottom) during the 5 hours workload with a reservation of 60% of total powercap

Experimental validation

Experimental validation

- Introduction
- DVFS \& Switch-off
- The model
- Algorithm and implementation
- Experimentations
-Conclusion and future works

Current and future works

- Powercap on live power values
- Implemented using Layouts
- Powercap on nodes
- DVFS
- What about reproducibility of jobs runs?
- To do DVFS right, we need to know the job
- Switch-off
- New scheduling algorithms
- Switch-off (with bonuses) whithout powercaps
- Switch-off particular components (cpus, gpus, network...)

Architect of an Open World"

- [11] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L. Rountree, and M. E. Femal, "Analyzing the energy-time trade-off in high-performance computing applications," IEEE Transactions on Parallel and Distributed Systems, 2007.
- [22] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, "BSLD threshold driven power management policy for HPC centers," in 2010 IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010.

Experimental validation

Fig. 8: Comparison of different scenarios of policies and powercaps based on normalized values of launched jobs, accumulated cpu time and total consumed energy during the 5 hours workload interval

