
 SLURM User’s Group, 2014      

 

Slurm 2014 User Group Bill Brophy, Bull

Martin Perry, Bull

Moe Jette, SchedMD

Yiannis Georgiou, Bull

Matthieu Hautreux, CEA

Slurm Processes Isolation



 SLURM User’s Group, 2014      

Tuning a program can be a difficult task
When it works correctly it can be a beautiful thing

Tuning a program can be a difficult task
When it works correctly it can be a beautiful thing



 SLURM User’s Group, 2014      

Even minor disturbances (Slurm processes) can cause a ripple
Resource Specialization  of Slurm processes attempts to address 
this issue



 SLURM User’s Group, 2014      

Motivations

• Studies have demonstrated that Operating system (OS) noise 
can have a major negative impact on the performance of parallel 
jobs  [1,2,3]
• Interference on individual cores --> Desynchronization in collective 

communication tasks --> Degraded application performance
• In Many Core Architectures the problem may be more visible

• Sources of interference preventive productive work on compute 
nodes
• OS Services
• Network Interfaces
• Kernel daemons 

 [1] Sarp Oral et al. Reducing Application Runtime Variability on Jaguar XT5 in Cray User Group 2010
 [2] Hakkan Akkan et al. Understanding and isolating the noise in the Linux kernel. IJHPCA 27(2): 136-146 

(2013)
   [3] Zero Overhead Linux, Tilera White Paper 2011

•

http://www.informatik.uni-trier.de/%7Eley/db/journals/ijhpca/ijhpca27.html#AkkanLL13
http://www.informatik.uni-trier.de/%7Eley/db/journals/ijhpca/ijhpca27.html#AkkanLL13


 SLURM User’s Group, 2014      

Background

• Isolation of system processes on specific cores in each 
compute node and preventing applications from using 
those cores  in some cases made a significant 
improvement in job performance [3]

• Slurm introduced support for Core Specialization at the 
job level on CRAY systems  (Slurm 14.03.0pre6) 
• CoreSpecPlugin=core_spec/cray
• –Core-Spec= <count>  option supported in 
salloc, srun & sbatch

 [3] Sarp Oral et al. Reducing Application Runtime Variability on Jaguar XT5 in Cray User Group 
2010



 SLURM User’s Group, 2014      

The Development Project

• Bull proposed and implemented a project to provide 
resource specialization on conventional Linux clusters

• Introduced system-level resource specialization
• Confine Slurm compute node daemons (slurmd, slurmstepd) 

to a specific number or set of cores so that they do not 
interfere with application processes (confined on other cores)

• Limit these processes to a specific amount of memory
• New configuration parameters  to control  resource 

specialization



 SLURM User’s Group, 2014      

The Design Approach

• The Slurm administrator specifies the number of cores, or a 
list of specific cores, and the memory specialization limit (if 
desired), for each node using new node configuration 
parameters in slurm.conf.
• Different nodes may have different numbers/lists of 

reserved cores and different memory limits.

• These parameters are applied by default to all jobs using 
the nodes.
• Individual jobs may override the default parameters and allocate 

the reserved cores, using a command line option.
• Supported for SelectType=select/cons_res.



 SLURM User’s Group, 2014      

The Design Approach (cont.)

•  Core specialization only makes sense if Slurm jobs are 
confined to their allocated resources, to prevent them from 
executing on the specialized CPUs

• Required configuration option to enable Core specialization
• TaskPlugin=task/cgroup in slurm.conf
• ConstrainCores=yes in cgroup.conf

• Without these options core specialization will have no effect 
and a warning message will be logged

• Similar approach to what is done when CPU frequency 
scaling is requested



 SLURM User’s Group, 2014      

Core Specialization Configuration and Usage

 

• The number of CPUs or a specific list of CPUs to specialize can 
be designated as part of the node definition using  new 
parameters in the slurm.conf
• CoreSpecCount=<number of cores>
• CPUSpecList=<comma separated list of CPU IDs>

• CoreSpecCount and CPUSpecList are mutually exclusive. 
• Size of the memory limit can be designated for each node in 

slurm.conf
• MemSpec=<memory limit in MB>



 SLURM User’s Group, 2014      

Core Specialization Configuration and Usage

• If resources specialization is defined, individual jobs 
may override the default parameters and allocate the 
reserved resources using the command line option.
• --core-spec=0 in srun/salloc/sbatch
• AllowSpecResourceUsage = 1 in slurm.conf 

• Default values for Linux systems
• No Core specialization on any node
• No Memory specialization limit on any node

• “scontrol show node” was enhanced  to display the new 
parameters.



 SLURM User’s Group, 2014      

Implementation Details: Slurmd side

• Modifications upon slurmd startup

• Recognizes & validates the new resource specialization configuration 
options

• Determines which machine CPU IDs will be specialized
• Invokes new functions to establish cgroups

– init_system_cpuset_cgroup
– init_system_memory_cgroup

• Invokes new functions to establish specialization values for the node
– set_system_cgroup_cpus
– set_system_cgroup_mem_limit

• Invokes new functions to attach itself to the system cpuset & system 
memory cgroups
– attach_system_cpuset_pid
– attach_system_memory_pid



 SLURM User’s Group, 2014      

Implementation Details: Slurmd side

Slurmd
Initialization

Processes resource 
specialization values

Determines specific 
CPUs for specialization

Determines 
memory limits 

Establishes cgroups

init_system_cpuset
_cgroup

init_system_memory_
cgroup

Establish specialization 
values for the node

set_system_cgroup_
cpus

set_system_cgroup
_mem

Attaches itself to 
cgroups

attach_system_cpu
set_pid

attach_system_me
mory_pid

Slurmd passes 
resource 
specialization 
information to 
Slurmctld in 
Node 
Registration 
Message



 SLURM User’s Group, 2014      

Implementation Details: Slurmctld side 

• Modifications were made to node registration message handler
• Invokes new function to build a core bitmap representing  the 

node’s specialized cores
• node_spec_bitmap  is a new member of node_record structure 

• Resource selection logic was modified to exclude allocation
    of specialized cores on all nodes allocated to jobs



 SLURM User’s Group, 2014      

Implementation Details: Slurmctld side 

Slurmctld

Node Registration 
Message Processing

Builds core bitmap for 
node’s specialized cores

Includes 
node_spec_bitmap in 

node_record

Resource Allocation 
Logic

Uses node_spec_bitmaps

Excludes specialized 
cores if usage not 

allowed

Allows allocation if Job 
can use specialized cores



 SLURM User’s Group, 2014      

Implementation Details: Slurmstepd side 

• Modifications were made to slurmstepd startup

• Invokes Core Specialization function to attach itself to the 
system cgroups

• Slurmstepd detaches automatically  from cgroups when it 
terminates



 SLURM User’s Group, 2014      

Implementation Details: Slurmstepd side

Slurmstepd

Initialization

Attaches itself to 

the system cgroup

created by slurmd

Termination
Automatically 

detaches from the 
cgroup



 SLURM User’s Group, 2014      

Example of usage
[root@ctld ~]$cat /etc/slurm/slurm.conf|grep CoreSpec
NodeName=mo[73-80] Procs=16 Sockets=2 CoresPerSocket=8 ThreadsPerCore=1 
State=UNKNOWN RealMemory=30076 CoreSpecCount=1

[root@server]$scontrol show node=mo80
NodeName=mo80 Arch=x86_64 CoresPerSocket=8 CPUAlloc=0 CPUErr=0 CPUTot=16 CPULoad=4.
69 Features=(null) Gres=(null) NodeAddr=mo80 NodeHostName=mo80 CoreSpecCount=1 
CPUSpecList=15
…
[root@ctld ~]$srun -N8 -n120 ./xhpl&
[root@mo80 ~]$ps -aux|grep slurm
27018
27872
[root@mo80 ~]$cat /cgroup/cpuset/slurm_mo80/system/cpus  
15
[root@mo80 ~]$cat /cgroup/cpuset/slurm_mo80/system/tasks  
27018
27872
[root@mo80 ~]$cat /cgroup/cpuset/slurm_mo80/uid_0/job_165/step_0/cpus
0-14
[root@mo80 ~]$cat /cgroup/cpuset/slurm_mo80/uid_0/job_165/step_0/tasks
27877
27878
...
[root@mo73 ~]# ps -u root -o pid,cpuid,comm
27018   15 slurmd
27872 15 slurmstepd 
27877 0 xhpl
27878 1 xhpl 
...



 SLURM User’s Group, 2014      

Example of usage
[root@ctld ~]$cat /etc/slurm/slurm.conf|grep Allow 
AllowSpecResourcesUsage=1

[root@ctld ~]$srun --core-spec=0 -N8 -n120 ./xhpl&
[root@mo80 ~]$ps -aux|grep slurm
27018
27872
[root@mo80 ~]$cat /cgroup/cpuset/slurm_mo80/system/cpus  
15
[root@mo80 ~]$cat /cgroup/cpuset/slurm_mo80/system/tasks  
27018
27872
[root@mo80 ~]$cat /cgroup/cpuset/slurm_mo80/uid_0/job_166/step_0/cpus
0-15
[root@mo80 ~]$cat /cgroup/cpuset/slurm_mo80/uid_0/job_166/step_0/tasks
27877
27878
...



 SLURM User’s Group, 2014      

Conclusions

•Initial tests with HPLinpack on 8 nodes (16 cores per node) 
did not show any actual difference in performance. 
• This is due to the small scale of the application, the small 

number of cores and the type of MPI job.
•Experiments planned on larger scale and larger number of 
cores per node.

•Developments to ensure that overhead and noise will be as 
small as possible in upcoming architectures

•In many cores architectures (MIC) there is a real value in 
isolating slurm processes upon particular resources (cores,
memory).
• perhaps even other system processes 



 SLURM User’s Group, 2014      


