

Slurm at the George Washington University Tim Wickberg - wickberg@gwu.edu Slurm User Group Meeting 2014 September 24, 2014

Colonial One - 2013

Colonial One - 2014

#

H

Colonial One - Current System

- Dell C8220 cluster, ~200 nodes, 2x since last year
 - 50x GPU nodes, each with dual NVIDIA K20 GPUs
 - 150x CPU nodes, each with dual 2.6GHz 8-core Intel Xeon CPUs, and 64/128/256GB of RAM
 - 2TB, 48-core 'hugemem' node
- FDR Infiniband, 2-to-1 oversubscription
- Dell NSS NFS server, ~120TB
- Dell / Terascala HSS Lustre storage system, ~250TB

Priority modeling

- Complicated priority model due to funding model
- Using priority/multifactor plugin
- Scheduler will try to balance groups runtime over a longer period, so they match their priority targets
- Top-level: contributing schools, colleges, research centers
 - Second-level: research groups, departments
 - Third: separate research groups in department
 - Fourth: individual users in group

Fairshare model - top tier

sacctmgr show assoc tree format="account,fairshare" | editing

root	1
c1	parent
cbi	1880
ccas	10080
other	1960
seas	4320
sphhs	720

- c1 account support folks, give them top ranking
- "other" 10% open to anyone (10pts per node)
- Everyone else 90pts per node

Fairshare model - secondary tier

sacctmgr show assoc tree format="account,fairshare" | editing

root	1
ccas	10080
astrophysics	17
ccas-other	31
economics	1
qcd	16

- at the second tier, set 1 point per node
- fairshare is calculated separately at each level, ratio between accounts at each level is all that matters

- Useful commands:
 - sshare
 - sprio
 - sreport
- Force users to specify timelimit:

JobSubmitPlugins="job_submit/require_timelimit"

Support

- Level 3 support contract with SchedMD
- Filed one bug in the past year #532
 - ... I was doing things out of order. My fault.
 - Patch to prevent this committed within a week

Feature requests

- Independent fairshare hierarchies for specific partitions
 - Our current model implies GPU and CPU nodes cycles are interchangeable
 - No one has complained about this... yet
- sreport support for partitions
 - same rationale as above
 - using ugly/slow bash scripts to aggregate statistics

Novel (ab)uses of Slurm

- Two non-traditional uses of the Slurm scheduler
 - Fastscratch dynamic SSD scratch space allocation
 - Backups
- "If all you have is a hammer, everything looks like a nail."
 - Slurm is a pretty good hammer...

Fastscratch

- Motivation
 - Genomic sequencing apps
 - "Big data"
- Random I/O with mixed read+writes
 - Our NFS and Lustre fileservers hate this
 - SSDs handle this much better than disks, but...
 - We can't afford to install large SSDs into all nodes
 - And don't want a "special" set of nodes just for them
 - And this wouldn't deal with shared access across nodes
- Possible solution build fileserver with ~3 TB of SSDs
 - And allocate snace to jobs on demand.

- Need to manage space and assign to active jobs only
- First approach... some way to use GRES?
 - GRES works with devices in nodes, this is a separate system
 - Jobs shouldn't have access to the fileserver
 - Let alone launch jobs on it

• There's a second mechanism in Slurm that tracks resources: Licenses

- slurm.conf: "Licenses=fastscratch:3000"
- One license == 1 GB of space
- Want 400GB? Add this to your job scripts #SBATCH --licenses=fastscratch:400

Fastscratch - Implementation

- Use a new PrologSlurmcltd script to
 - SSH into fileserver to allocate space
 - XFS project quotas currently
 - /fastscratch/\$jobid
 - Set permissions, adjust exports
- Adjust Prolog scripts
 - Mount /fastscratch/\$jobid on assigned nodes

Fastscratch - Implementation

- Epilog
 - Unmount /fastscratch
- EpilogSlurmctld
 - Remove directory and exports
- Jobs are responsible for moving data in/out of assigned /fastscratch space
 - Same as if they were using local /scratch space, although this is available across multiple nodes

Backups

- Disk backup servers
 - Located in a separate datacenter
 - ~100TB usable in 4RU.
- ZFS on FreeBSD, uses zfs snapshots
- Dedicated transfer node located within cluster -"syncbox"
- Goal: run rsync on separate user directories in parallel.
- Bottlenecks are
 - (1) SSH encryption speed (limited by core speed),
 - (2) TCP throughput between locations, then
 - (3) disk I/O.
- Running in parallel lets us get past (1) and (2).

• Create special partition:

PartitionName=syncbox Nodes=syncbox MaxTime=7-0

RootOnly=YES Hidden=YES Shared=YES:8

• Run each rsync as separate job:

```
#!/bin/bash
#SBATCH -p syncbox --share -t 1-0
# sync
rsync -avd /home/$1 backup1:/storage/home
# snapshot
ssh backup1 zfs snapshot storage/home/$i@$(date +%Y%m%
d)
```


Thank You

Documentation: <u>http://colonialone.gwu.edu</u> Twitter: @GWColonialOne Support Email: <u>hpchelp@gwu.edu</u>

Tim Wickberg wickberg@gwu.edu

Funicolare Monte Brè

Half-hour ride each way, we're trying to take the 5:45pm ride up, 7pm ride down (or may walk down to a bus route instead)

Meet in front of the convention center by 5:10pm

15 minute walk to the station from here

CH 25 for round trip ticket

