

Topology-Aware Resource Selection

Joint work with: Emmanuel Jeannot, Guillaume Mercier

Adèle Villiermet **Runtime Team** Inria Bordeaux Sud-Ouest

Context

The topology is not flat Due to multicore processors current and future parallel machines are hierarchical

Not all the processes exchange the same amount of data

The speed of the communications, and hence performance of the application depends on the way processes are mapped to resources.

Process Placement Problem

Given :

- Parallel machine topology
- •Process **affinity** (communication pattern)

Map processes to resources (cores) to reduce communication cost: a nice algorithmic problem:

- •Graph partitionning (Scotch, Metis)
- •Application tuning [Aktulga et al. Euro-Par 12]
- •Topology-to-pattern matching (TreeMatch)

TreeMatch, a Process Placement Solution

Building the communication pattern

We need affinity between processing elements: communication pattern

- Statically (thanks to compiler)
- **Dynamic Monitoring**
- Blank execution and tracing
- After data partitioning (e.g. Scotch)

•

٠

•

Obtaining the topology

Abstract the topology with a tree Assume communication always cost more when you need to reach higher levels

Inría

September 24, 2014

Putting everything together: Process Placement with TreeMatch

Communication matrix + Tree Topology = Process permutation

Innía

Besource selection

Selecting Resources

(nría_

Implementation

- Within SLURM 2.6.5
- Only with select/cons_res plugin
- srun
- Binding possibility with cgroup
- Resource selection and process placement at the same time

Why topology-aware resource selection could work?

0-7	0	1000	0	20
8-15	1000	0	10	0
16-23	0	10	0	1000
24-31	20	0	1000	0

Why topology-aware resource selection could work?

SLURM Then TreeMatch

0-7	0	1000	0	20
8-15	1000	0	10	0
16-23	0	10	0	1000
24-31	20	0	1000	0

Why topology-aware resource selection could work?

sw0 sw2 sw1 sw3 sw4 sw5 sw6 n7 n5 n0 n1 n3 n4 n6 s0 s1 . . . c2 c0 c3 c1 n0 n1 n3 n5 p0-p7 p8-p15 p16-p23 p24-p31

0-7	0	1000	0	20
8-15	1000	0	10	0
16-23	0	10	0	1000
24-31	20	0	1000	0

SLURM and TreeMatch

Early experiments

- Same protocol as SLURM/Bull team.
- Simulation using real traces of the Curie CEA machine: 80640 cores.
- Model of performance gain of TreeMatch depending on the amount of communication performed by application (10%, 30%, 50%).
- Randomly generated communication matrices.
- Same starting workflow:
 - 130 running jobs
 - 26 queued jobs

Submitted jobs from 372 (1 hour) to 14171 (100 hours).

Evaluation on the difference of the submitted jobs.

•

•

•

•

•

•

Simulation: makespan

Simulation: makespan

Inría

Simulation: average stretch

Simulation: average flow

Conclusion

Simulation results encouraging

• Start a PhD to continue

• Future works :

Emulation

Complete the implementation

Improvement ideas

Build a usual communication matrix list

Improve algorithmic of resource selection

•

Thanks!

www.inria.fr