DE LA RECHERCHE À L'INDUSTRIE

CEA Site Report

www.cea.fr

SLURM usage

SLURM related work

Project started in 1998

Part of the Simulation Project for French Nuclear Deterence

- **Tera-100** supercomputer
 - Installed in 2010
 - ▶ 1 PF/s
 - Owned an operated by CEA
- Hosted at CEA Defense computing center

PRACE (PaRtnership for Advanced Computing in Europe)

Project Started in 2007

Curie Supercomputer

- First French Tier-0 supercomputer for the PRACE project
 - 2 stages installation in 2010-2011
 - 1.6 PF/s

Owned by GENCI (Grand Equipement National pour le Calcul Intensif)

Operated by CEA

Hosted at the **TGCC** « Très Grand Centre de calcul du CEA »

CEA computing facility

CCRT (Computing Center for Research and Technology)

- French Industrial and research partners shared computing center
 Hosted by CEA/DAM/DIF since 2003
- Airain Supercomputer
 - CCRT-C machine
 - 3rd phase of the CCRT project, installed in 2012
 - 200 TF/s
 - Operated by CEA
- Hosted at the TGCC « Très Grand Centre de calcul du CEA »
 - CEA computing facility

CEA R&D Plateform

- Autonomous computing center
- Evaluation and validation of HW and SW prototypes
- Next evolution stage and focus point
 - R&D phase of T1K
 - Will help to define the main concepts of the next generation systems at CEA
 - Including SLURM related studies

Footprint

- All major clusters introduced since 2009 and operated by CEA
 - Tera+ : fortoy
 - Tera : Tera-100
 - PRACE : curie
 - CCRT : airain

Support

- SLURM supported by supercomputer vendor for large machines of the TERA/PRACE/CCRT projects
 - One single vendor for now : BULL
- Level 3 support on the R&D cluster fortoy
 Provided by SchedMD LLC
 - Community version with community support for other small scale clusters

Hardware specificities

- Bull hardware
 - Bullx S6010 nodes
 - 4 Nehalem sockets
 32 cores
 - Bullx B510 thin nodes
 - 2 Sandy Bridge EP sockets
 16 cores
 - Bullx B505 blades
 - 2 Westmere / 2 NV M2090
 8 cores

- Bullx S6010 nodes with BCS (Bull Coherency Switch)
 - 4x 4 Nehalem sockets
 - 128 cores
- Infiniband interconnects only
 Tree/Pruned-Tree topologies

Configuration specificities

- Core/Memory level allocation
 - More flexible as it allows node level allocations too
 - Best-fit allocation across sockets
 - Task/cgroup for confinement/affinity
- Tree topology description
 - Optimize the number of leaf switches used by a job
- Multifactor Scheduling logic
 - QoS support
 - Fairshare support

Backfill scheduling

SLURM User Group Meeting 2012 | Matthieu Hautreux <matthieu.hautreux@cea.fr> | 11/23

Exécution

Configuration specificities

- Large usage of advanced reservations
 - Especially on TGCC machines to ensure resources to Grand Challenges or training sessions
 - Also used to planify maintenance period

SLURM Spank framework

- Kerberos credential support
 - using Auks
- X11 support through tunneled SSH
 - Using local dev slurm-spank-x11
- OOM-Killer score adjustment
 - Using local dev spank-oom-adj

Configuration specificities

Same ideas and principles across the different machines

The only difference is the Fairshare scheduling not used on the Tera project

SLURM versions in production

- Bull flavors of slurm-2.3.x and slurm-2.4.x
- Backports of dev branch patches when necessary
- Wrapped in a CEA set of scripts and commands called « Bridge »
 - Automate per machine/user/project configuration
 - Simplify the integration of external tools and debuggers
 - Abstract the underlying ressource manager / Batch system
 - In the process of being released as an opensource project

Feedback

Sanity checks

- Large number of checks to perform
 - Have a high impact on the nodes when ran
- May kill a job because of an unused faulty resource
 - Degrade time-to-solution and robustness of the system
- Current thoughts
 - Move Sanity checks to prolog/epilog and no longer use the periodic check
 - At least reduce the periodic tests to a vital minimum
 - Pros/Cons prolog vs epilog
 - Prolog:
 - + ensure that all works well right before the job execution
 - delay the execution of the job, decrease the responsiveness
 - Epilog :
 - + do not decrease responsiveness, only increase return-to-service time
 - issues that appears between epilog and next jobs are not took into account
 - Do checks in epilog and perform periodic check on idle or partially idle nodes to detect issues in advance (remove the main drawback of sanity checks in epilog)

Feedback

Scalability

- Concerning helper tasks running on compute nodes
 - i.e. : Prolog/Epilog/HealthCheck, Pam_slurm, Spank plugins
- Need to contact the controller to get mandatory state information for their internal logic
 - i.e. : sinfo -n \$(hostname) to get the state of the node in epilog, squeue to get the information concerning concurrent jobs on the node, ...
 - A large load is induced by simultaneous helper tasks
- With thousands of nodes and hundreds of jobs, the controller is stuck too often
 - i.e. : Large number of threads only waiting to process sinfo requests
- More states should be propagated from slurmctld to slurmds to avoid N->1 callbacks
 - Current workaround is to use « scontrol listpids » and try to guess what is happening on the node without disturbing the controller (other jobs, other jobs from the same user, ...)

Feedback

- Responsiveness
 - Loaded controllers process requests with a high level of concurrency
 - A few interactive user/admin RPCs overwhelmed by a large number of daemons messages coming from the compute nodes (see previous slide)
 - No distinction between « control flows » of user/admin requests and « data flows » of internal mechanisms
 - A kind of QOS would be great to separate the flows and provides different levels of QOS per RPC and per initiator

Feedback

- Internal communication tree
 - Generic tree with configurable width to contact all the involved nodes
 - No easy way to get the tree used to communicate between a particular nodeset
 - Mandatory to understand the root cause of a communication issue with hundreds/thousands of nodes
 - Logical tree not mapped to the physical underlying control network
 - May cause significant overhead to the physical network layer in some situation exp : aggregation of stacked ethernet switches federated by a single router

Feedback

- Memory consumption and monitoring
 - The most problematic issue on a day-to-day basis
 - Memory support in task/cgroup could help but ...
 - RHEL6 kernels suffer from SMP locality issues and degrades performances with memory cgroup
 - OOM-killer external actions are not easy to track and associate with the initiator
 - Need to pursue the proposition of Mark Grondona concerning cgroup event management

SLURM related work

SLURM related work

Studies

Scalablity study performed with Yiannis Georgiou from Bull
 Should be detailed during this user group by Yiannis

2 internships

- SLURM layout framework (May-Jul 2012, but to be continued in 2013)
 - Evaluate the possibility to provide a generic framework to describe relations between nodes and other components in a supercomputer
 - Racking, power supply cables, cooling pipes, ethernet control network, ...
 - Evaluate the possibility to use this framework to enhance the communication and scheduling logic of SLURM
- SLURM topology (Jun-Dec 2012)
 - Evaluate state-of-the-art interconnect topologies and their properties
 - Assess the direct eligibility of SLURM to manage the new ones or think about the way to manage them efficiently

Troubleshooting and features

Some patches delivered to Bull as our main support contact

- Most/All of them integrated or corrected
 - Only get rid of the local soft/hard memory limits proposal of the last user group

A few patches proposed directly to the community

We want to still say « Hello » to the community sometimes :)

- A few enhancements
 - Modification of the task/cgroup logic (with the help of M.Grondona)
 - Reorganization of slurmstepd logic to better handle secured FS

Thank you for your attention

Questions ?

Commissariat à l'énergie atomique et aux énergies alternatives Centre DAM Ile-de-France | Bruyères-le-Châtel 91297 Arpajon Cedex T. +33 (0)1 69 26 40 00 | Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

_

DAM/DIF DSSI SISR