
Evaluating scalability and efficiency of the
Resource and Job Management System on

large HPC Clusters

Yiannis Georgiou and Matthieu Hautreux



Plan

Introduction-Motivations

Experimental Methodology

Evaluation Results - Discussions
Scalability in terms of number of submitted jobs
Scheduling Efficiency in terms of Network Topology aware placement
Scalability in terms of number of resources

Conclusions - Future Works

2 / 33



Plan

Introduction-Motivations

Experimental Methodology

Evaluation Results - Discussions
Scalability in terms of number of submitted jobs
Scheduling Efficiency in terms of Network Topology aware placement
Scalability in terms of number of resources

Conclusions - Future Works

3 / 33



Introduction

Facts for large HPC supercomputers
I Increased number of resources
I Submission of large number of jobs
I Large network diameters and more complex

designs

Resource and Job Management System(RJMS)

The goal of the RJMS is to satisfy users’ demands for computation and
assign user jobs upon the computational resources in an efficient manner.

RJMS Issues for large HPC supercomputers
I Resources Scalability
I Large workload management
I Network topology aware placement efficiency

4 / 33



Introduction

Facts for large HPC supercomputers
I Increased number of resources
I Submission of large number of jobs
I Large network diameters and more complex

designs

Resource and Job Management System(RJMS)

The goal of the RJMS is to satisfy users’ demands for computation and
assign user jobs upon the computational resources in an efficient manner.

RJMS Issues for large HPC supercomputers
I Resources Scalability
I Large workload management
I Network topology aware placement efficiency

5 / 33



Introduction

Facts for large HPC supercomputers
I Increased number of resources
I Submission of large number of jobs
I Large network diameters and more complex

designs

Resource and Job Management System(RJMS)

The goal of the RJMS is to satisfy users’ demands for computation and
assign user jobs upon the computational resources in an efficient manner.

RJMS Issues for large HPC supercomputers
I Resources Scalability
I Large workload management
I Network topology aware placement efficiency

6 / 33



HPC supercomputers

Tera-100 supercomputer
I In production since November 2010
I 17th in June’s 2012 Top500 list
I 1.25 Pflops theoretical

Curie supercomputer
I In production since March 2012
I 9th in June’s 2012 Top500 list
I 1.6 Petaflops theoretical

7 / 33



Motivations

Evaluate the behaviour of SLURM regarding:
I Large workload management
I Network topology aware placement
I Scalability in terms of number of nodes to manage

Tune Tera100 & Curie configurations for best performances
I Core level allocation, fine topology description, backfill scheduler

Evaluate the behaviour of SLURM for larger machines
I Experimentations beyond the current scale of existing machines

8 / 33



Motivations

Evaluate the behaviour of SLURM regarding:
I Large workload management
I Network topology aware placement
I Scalability in terms of number of nodes to manage

Tune Tera100 & Curie configurations for best performances
I Core level allocation, fine topology description, backfill scheduler

Evaluate the behaviour of SLURM for larger machines
I Experimentations beyond the current scale of existing machines

9 / 33



Motivations

Evaluate the behaviour of SLURM regarding:
I Large workload management
I Network topology aware placement
I Scalability in terms of number of nodes to manage

Tune Tera100 & Curie configurations for best performances
I Core level allocation, fine topology description, backfill scheduler

Evaluate the behaviour of SLURM for larger machines
I Experimentations beyond the current scale of existing machines

10 / 33



Plan

Introduction-Motivations

Experimental Methodology

Evaluation Results - Discussions
Scalability in terms of number of submitted jobs
Scheduling Efficiency in terms of Network Topology aware placement
Scalability in terms of number of resources

Conclusions - Future Works

11 / 33



Experimental Methodology

Method for Throughput Evaluations
I Tera100 nodes during maintenance periods
I Real-Scale experimentations
I Submission bursts generation scripts

Method for Efficiency and Scalability Evaluations
I Emulated experimentations through multiple-slurmd mode

I Multiple virtual SLURM nodes per physical nodes
I Enhanced to ease scalable deployement of simulated clusters
I Patches accepted in SLURM main branch

I Tera100 nodes during maintenance periods
I Automatic generation of simulated clusters configuration
I Automatic start of all the SLURM daemons
I Fully automated to enable reproduction of same experiments

I Automatic run of a single benchmark
I Based on a known model: ESP
I Variations of ESP used with different job counts and sizes

Emulation methodology validation
I The goal is to evaluate the behavior of

SLURM scheduling and topology
placement efficiency; these functions
take place as internal mechanisms on
the slurmctld controller deamon.

I Similar results of workloads execution
with real and emulated scale
experimantations.

12 / 33



Experimental Methodology

Method for Throughput Evaluations
I Tera100 nodes during maintenance periods
I Real-Scale experimentations
I Submission bursts generation scripts

Method for Efficiency and Scalability Evaluations
I Emulated experimentations through multiple-slurmd mode

I Multiple virtual SLURM nodes per physical nodes
I Enhanced to ease scalable deployement of simulated clusters
I Patches accepted in SLURM main branch

I Tera100 nodes during maintenance periods
I Automatic generation of simulated clusters configuration
I Automatic start of all the SLURM daemons
I Fully automated to enable reproduction of same experiments

I Automatic run of a single benchmark
I Based on a known model: ESP
I Variations of ESP used with different job counts and sizes

Emulation methodology validation
I The goal is to evaluate the behavior of

SLURM scheduling and topology
placement efficiency; these functions
take place as internal mechanisms on
the slurmctld controller deamon.

I Similar results of workloads execution
with real and emulated scale
experimantations.

13 / 33



Experimental Methodology

Method for Throughput Evaluations
I Tera100 nodes during maintenance periods
I Real-Scale experimentations
I Submission bursts generation scripts

Method for Efficiency and Scalability Evaluations
I Emulated experimentations through multiple-slurmd mode

I Multiple virtual SLURM nodes per physical nodes
I Enhanced to ease scalable deployement of simulated clusters
I Patches accepted in SLURM main branch

I Tera100 nodes during maintenance periods
I Automatic generation of simulated clusters configuration
I Automatic start of all the SLURM daemons
I Fully automated to enable reproduction of same experiments

I Automatic run of a single benchmark
I Based on a known model: ESP
I Variations of ESP used with different job counts and sizes

Emulation methodology validation
I The goal is to evaluate the behavior of

SLURM scheduling and topology
placement efficiency; these functions
take place as internal mechanisms on
the slurmctld controller deamon.

I Similar results of workloads execution
with real and emulated scale
experimantations.

14 / 33



RJMS evaluation with workload injection

ESP benchmark a

ahttp://www.nersc.gov/assets/RD/ESP/espsc00.pdf

I quantitative evaluation of launching and scheduling via a single
metric: the smallest elapsed execution time of a representative workload

I Complete independence from the hardware performances
I automatic adaptation on cluster sizes
I parametrized Gaussian model of submission
I particular number of jobs derived from different classes with various

characteristics

Specific Parameters
I No real computation (sleep jobs)

15 / 33



Proposed models for workload injection

Light-ESP model
I shrinked execution time than ESP
I 230 jobs and 14 classes of jobs
I Largest jobs use 50% of the machine (ignoring Z jobs)
I Smallest jobs use 3.125% of the machine

Parallel Light-ESPx10 model
I shrinked execution time than ESP
I 10x smaller job sizes
I no Z jobs (13 classes)
I 10x more jobs (2280 jobs parallel launches)
I Largest jobs use 5% of the machine
I Smallest jobs use 0.3% of the machine

16 / 33



Proposed models for workload injection

Benchmarks Normal-ESP Light-ESP Parallel Light-ESP

Job Type Fraction of job size relative to system size
(job size for cluster of 80640 cores)

Number of Jobs / Run Time (sec)

A 0.03125 (2520) / 75 / 267s 0.03125 (2520) / 75 / 22s 0.003125 (252) / 750 / 22s
B 0.06250 (5040) / 9 / 322s 0.06250 (5040) / 9 / 27s 0.00625 (504) / 90 / 27s
C 0.50000 (40320) / 3 / 534s 0.50000 (40320) / 3 / 45s 0.05000 (4032) / 30 / 45s
D 0.25000 (20160) / 3 / 616s 0.25000 (20160) / 3 / 51s 0.02500 (2016) / 30 / 51s
E 0.50000 (40320) / 3 / 315s 0.50000 (40320) / 3 / 26s 0.05000 (4032) / 30 / 26s
F 0.06250 (5040) / 9 / 1846s 0.06250 (5040) / 9 / 154s 0.00625 (504) / 90 / 154s
G 0.12500 (10080) / 6 / 1334s 0.12500 (10080) / 6 / 111s 0.01250 (1008) / 60 / 111s
H 0.15820 (12757) / 6 / 1067s 0.15820 (12757) / 6 / 89s 0.01582 (1276) / 60 / 89s
I 0.03125 (2520) / 24 / 1432s 0.03125 (2520) / 24 / 119s 0.003125 (252) / 240 / 119s
J 0.06250 (5040) / 24 / 725s 0.06250 (5040) / 24 / 60s 0.00625 (504) / 240 / 60s
K 0.09570 (7717) / 15 / 487s 0.09570 (7717) / 15 / 41s 0.00957 (772) / 150 / 41s
L 0.12500 (10080) / 36 / 366s 0.12500 (10080) / 36 / 30s 0.01250 (1008)/ 360 / 30s
M 0.25000 (20160) / 15 / 187s 0.25000 (20160) / 15 / 15s 0.02500 (2016) / 150 / 15s
Z 1.00000 (80640) / 2 / 100s 1.00000 (80640) / 2 / 20s 1.00000 (80640) 2 / 20s

Total Jobs /
Theoretic Run Time 230 / 10773s 230 / 935s 2282 / 935s

17 / 33



Plan

Introduction-Motivations

Experimental Methodology

Evaluation Results - Discussions
Scalability in terms of number of submitted jobs
Scheduling Efficiency in terms of Network Topology aware placement
Scalability in terms of number of resources

Conclusions - Future Works

18 / 33



Jobs High throughput

Large workload management
I Large number of directly elligible jobs

I 10k jobs from 1 to 8 cores to fill an idle machine

I Large number of pending job launches
I 1 big allocation to ensure that no new jobs can be scheduled
I 10k jobs from 1 to 8 cores to fill an idle machine

I Large number of job terminations
I 10k jobs from 1 to 8 cores to fill an idle machine
I Global cancellation when every jobs are running

19 / 33



Large workload management

High throughput of directly eligible job launches
I Comparison of 2 SLURM configurations

I default mode: 1 schedule try per incoming job
I defer mode: 1 schedule try every 60 seconds (configurable)

0 50 100 150

0
5

0
1

0
0

1
5

0

Instant Throughput for 10000 submitted jobs (random 1−8 cores) 

 upon a 2020nodes (32cpu/node) cluster submission NO defer strategy

Time(sec)

N
u

m
b

e
r 

o
f 

J
o

b
s

0 50 100 150
0

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

Instant Throughput for 10000 submitted jobs (random 1−8 cores) 

 upon a 2020nodes (32cpu/node) cluster submission WITH defer strategy

Time(sec)

N
u

m
b

e
r 

o
f 

J
o

b
s

Observations
I defer mode greatly increase the submission rate
I but induces latency between submission and execution
I not good choice in case of single interactive jobs

20 / 33



Large workload management

Large number of pending job submissions
I Heavy load induced on the controller

I Every job submission triggers the scheduler logic even in defer mode
I Patch done to remove the scheduling logic greatly improves the

submission rate (landed in SLURM main branch)

I Lower rate than for elligible jobs
I No longer the case, corrected in the main branch

0 500 1000 1500 2000

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Instant Throughput for 10000 submitted jobs (random 1−8 cores) in Waiting State

 upon a 2020nodes (32cpu/node) cluster BEFORE defer optimization

Time(sec)

N
u

m
b

e
r 

o
f 

J
o

b
s

0 500 1000 1500 2000

0
1

0
2

0
3

0
4

0

Instant Throughput for 10000 submitted jobs (random 1−8 cores) in Waiting State

 upon a 2020nodes (32cpu/node) cluster AFTER defer optimization

Time(sec)

N
u

m
b

e
r 

o
f 

J
o

b
s

21 / 33



Large workload management

Large number of job terminations
I Heavy load due to a large number of completion messages involving a

complexe logic in SLURM internals
I 20 minutes of unresponsiveness of the system

I Patch from the community to reduce the complexity
I greatly improves the termination rate
I No major unresponsiveness after applying the patch

0 500 1000 1500

0
1

0
2

0
3

0
4

0
5

0

Instant Throughput for 10000 terminating jobs (random 1−8 cores) 

 upon a 2020 nodes (32cpu/node) cluster (before backfill optimization)

Time(sec)

N
u

m
b

e
r 

o
f 

J
o

b
s

0 500 1000 1500

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Instant Throughput for 10000 terminating jobs (random 1−8 cores) 

 upon a 2020 nodes (32cpu/node) cluster (after backfill optimization) 

Time(sec)

N
u

m
b

e
r 

o
f 

J
o

b
s

22 / 33



Network Topology aware placement

SLURM topology aware plugin
I to support network tree topology awareness of jobs
I best-fit approach pack the jobs on the minimal number of switches

maximizing the amount of remaining free switches
I file for the description of the network design topology

Curie cluster network design
I Current Infiniband technology is based on a 36 ports ASIC that made

fat-tree topologies constructed around a pattern of 18 entities.
I Actual design: 280 Infiniband leaves aggregated by 18 324 ports

physical switches grouping the 5040 nodes in 16 virtual interme- diate
switches.

23 / 33



Network Topology aware placement

Emulation of Curie using 200 Tera-100 physical nodes
I 5040 nodes with an Infiniband fat tree (18-ary fat tree)
I The real topology of the emulated cluster is different than the physical

nodes topology. Not an issue since the goal is to evaluate the behavior
of SLURM scheduling and not the behavior of the workload execution.

10 runs of Light-ESP benchmark for 4 scenarios
I no topology
I Basic topology:single virtual switch
I Medium topology: intermediate level only (324 nodes switches only)
I Fine topology: all levels (324 nodes switches, 18 nodes lineboards)

Comparison of placement versus optimal placement
I Optimal numbers of intermediate and leaf levels switches
I Evaluate random success of not sufficiently defined descriptions to

provide good solution

24 / 33



Network Topology placement

 0

 20

 40

 60

 80

 100

No-Topo
(1369s)

Basic-Topo
(1323s)

Medium-Topo
(1370s)

Fine-Topo
(1315s)

J
o

b
s
 P

e
rc

e
n

ta
g

e
s

Topology placement strategies (with total Execution time of Light-ESP in sec)

Optimal placement respecting topological constraints for 230 jobs of Light-ESP benchmark
 upon a 5040node(16cpu/node) cluster with SLURM and different topology placement strategies

Optimal-for-Switches
Optimal-for-Lineboards

Optimal-for-Switches-and-Lineboards

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF on Waiting time for Light−ESP benchmark (230 jobs)

upon a 5040 nodes (16 cpu/node) cluster with variation on topology strategies

Wait time [s]

J
o

b
s
 [

%
]

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

topo−fine

topo−medium

topo−basic

no−topo

Topology effectiveness
I Fine topology not efficient in providing the optimal number of

intermediate levels switches
I Because the best fit selection of switches is only made at leaf levels when

the system is fragmented
I Pruned topology, like Tera-100, should not use such a fine description
I Full fat tree can use it as it still gives very good results for leaf levels 25 / 33



Nodes Scalability

Scalability evaluation (standard jobs)
I 400 physical nodes of Tera-100
I 10 runs of Light-ESP benchmark for 6 scenarios

I 1024, 2048, 4096, 8192, 12288 and 16384 nodes

I Global execution time measurement
I Reflect the internal scheduler logic scalability when number of resources

increased at the same pace as job sizes

Scalability evaluation (small jobs)
I 200 physical nodes of Tera-100

I same results as with 400

I Parallel Light-ESP x10 benchmark for 6 scenarios
I 1024, 2048, 4096, 8192, 12288 and 16384 nodes
I Jobs are ten times smaller (in size) than for the previous evaluation

I Global execution time measurement
I Reflect the internal scheduler logic scalability when number of resources

increased but with a workload composed of a larger number of small jobs

26 / 33



Resources scalability for standard jobs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  200  400  600  800  1000  1200

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESP synthetic workload of 230jobs 
 and SLURM upon 1024 nodes (16cpu/node) cluster 

 (emulation upon 400 physical nodes)

System Utilization
Job Start Time Impulse

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  200  400  600  800  1000  1200  1400  1600

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESP synthetic workload of 230jobs 
 and SLURM upon 8192 nodes (16cpu/node) cluster 

 (emulation upon 400 physical nodes)

System Utilization
Job Start Time Impulse

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  200  400  600  800  1000  1200  1400

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESP synthetic workload of 230jobs 
 and SLURM upon 4096 nodes (16cpu/node) cluster 

 (emulation upon 400 physical nodes)

System Utilization
Job Start Time Impulse

 0

 50000

 100000

 150000

 200000

 250000

 0  500  1000  1500  2000  2500

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESP synthetic workload of 230jobs 
 and SLURM upon 16384 nodes cluster 

 (emulation upon 400 physical nodes)

System Utilization
Job Start Time Impulse

Scalability is great up to a threshold between 4096 and 8192 nodes
I The controller is heavily loaded at the end of large jobs

I Every node involved in a job sends its own completion message
I too much time spent in handling that load on the controller

I Visible in the stretching of the diagram

I An aggregation strategy must be studied for better scalability

27 / 33



Resources scalability for standard jobs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  200  400  600  800  1000  1200

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESP synthetic workload of 230jobs 
 and SLURM upon 1024 nodes (16cpu/node) cluster 

 (emulation upon 400 physical nodes)

System Utilization
Job Start Time Impulse

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  200  400  600  800  1000  1200  1400  1600

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESP synthetic workload of 230jobs 
 and SLURM upon 8192 nodes (16cpu/node) cluster 

 (emulation upon 400 physical nodes)

System Utilization
Job Start Time Impulse

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  200  400  600  800  1000  1200  1400

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESP synthetic workload of 230jobs 
 and SLURM upon 4096 nodes (16cpu/node) cluster 

 (emulation upon 400 physical nodes)

System Utilization
Job Start Time Impulse

 0

 50000

 100000

 150000

 200000

 250000

 0  500  1000  1500  2000  2500

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESP synthetic workload of 230jobs 
 and SLURM upon 16384 nodes cluster 

 (emulation upon 400 physical nodes)

System Utilization
Job Start Time Impulse

Scalability is great up to a threshold between 4096 and 8192 nodes
I The controller is heavily loaded at the end of large jobs

I Every node involved in a job sends its own completion message
I too much time spent in handling that load on the controller

I Visible in the stretching of the diagram

I An aggregation strategy must be studied for better scalability

28 / 33



Resources scalability for small jobs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  200  400  600  800  1000  1200  1400  1600

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESPx10 synthetic workload of 2280jobs 
 and SLURM upon 1024 nodes (16cpus/node) cluster 

 (emulation upon 200 physical nodes)

System Utilization
Job Start Time Impulse

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  500  1000  1500  2000

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESPx10 synthetic workload of 2280jobs 
 and SLURM upon 8192 nodes cluster 
 (emulation upon 200 physical nodes)

System Utilization
Job Start Time Impulse

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  200  400  600  800  1000  1200  1400  1600

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESPx10 synthetic workload of 2280jobs 
 and SLURM upon 4096 nodes (16cpus/node) cluster 

 (emulation upon 200 physical nodes)

System Utilization
Job Start Time Impulse

 0

 50000

 100000

 150000

 200000

 250000

 0  500  1000  1500  2000  2500  3000

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESPx10 synthetic workload of 2280jobs 
 and SLURM upon 16384 nodes cluster 

 (emulation upon 200 physical nodes)

System Utilization
Job Start Time Impulse

Scalability is great up to a threshold between 4096 and 8192 nodes
I Very high efficiency for clusters up to 4096 nodes

I Visible on the high packing of the 2 first diagrams

I Good responsiveness of the system but system utilizations for large
clusters collapse

I Further investigations required, probably a smoothed version of the
previous issue (small jobs no longer so small at that scale)

29 / 33



Resources scalability for small jobs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  200  400  600  800  1000  1200  1400  1600

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESPx10 synthetic workload of 2280jobs 
 and SLURM upon 1024 nodes (16cpus/node) cluster 

 (emulation upon 200 physical nodes)

System Utilization
Job Start Time Impulse

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  500  1000  1500  2000

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESPx10 synthetic workload of 2280jobs 
 and SLURM upon 8192 nodes cluster 
 (emulation upon 200 physical nodes)

System Utilization
Job Start Time Impulse

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  200  400  600  800  1000  1200  1400  1600

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESPx10 synthetic workload of 2280jobs 
 and SLURM upon 4096 nodes (16cpus/node) cluster 

 (emulation upon 200 physical nodes)

System Utilization
Job Start Time Impulse

 0

 50000

 100000

 150000

 200000

 250000

 0  500  1000  1500  2000  2500  3000

N
u
m

b
e
r 

o
f 
C

o
re

s

Time (sec)

System utilization for Light ESPx10 synthetic workload of 2280jobs 
 and SLURM upon 16384 nodes cluster 

 (emulation upon 200 physical nodes)

System Utilization
Job Start Time Impulse

Scalability is great up to a threshold between 4096 and 8192 nodes
I Very high efficiency for clusters up to 4096 nodes

I Visible on the high packing of the 2 first diagrams

I Good responsiveness of the system but system utilizations for large
clusters collapse

I Further investigations required, probably a smoothed version of the
previous issue (small jobs no longer so small at that scale)

30 / 33



Plan

Introduction-Motivations

Experimental Methodology

Evaluation Results - Discussions
Scalability in terms of number of submitted jobs
Scheduling Efficiency in terms of Network Topology aware placement
Scalability in terms of number of resources

Conclusions - Future Works

31 / 33



Conclusions-Future Works

Experimental Methodology
I Emulation of large clusters on current existing systems is really

interesting
I Good to evaluate the behavior of the RJMS internals at scale

I Automation of emulation in production jobs
I Great to avoid a particular set of physical nodes as the back-end

I Avoid to reconfigure everything when a single node has a failure

I Ease reproduction of identical benchmarks to guarantee the results

I More workloads, synthetic and real, should be tested
I Evaluate more scenarios and detect issues to correct them

32 / 33



Conclusions-Future Works

Evaluation Results and Observations
I Large workload management

I Good results up to 10k jobs with minor modifications (all included now)

I Topology effectiveness
I Good results but gains are possible with an enhanced management of

intermediate levels
I Needs to add a multi-levels best-fit logic of selection

I Nodes scalability
I Scalability threshold between 4096 and 8192 nodes (depends on the

workload)
I Improvements in completion messages handling seems mandatory

I Large impact on performances on large clusters
I One of the few n-to-1 communication patterns of SLURM

I More tests on large workload and large clusters are required

33 / 33


	Introduction-Motivations
	Experimental Methodology
	Evaluation Results - Discussions
	Scalability in terms of number of submitted jobs
	Scheduling Efficiency in terms of Network Topology aware placement
	Scalability in terms of number of resources

	Conclusions - Future Works

