Jobs Resource Utilization as a Metric for Clusters Comparison and Optimization

Joseph Emeras

Cristian Ruiz Jean-Marc Vincent Olivier Richard

Slurm User Group Meeting 9 - 10 October, 2012

Tracing of jobs consumptions for about a year

- Processor, disk, memory, network, but unfortunately not energy
- 2 production clusters
- Analyze the processor resource consumption vs. the resource allocation
- Results were not exactly what we expected...

Outline

- CIMENT Mesocenter
- System Utilization Metric

2 Monitoring Tool

- Data Processing
- Resource Utilization Criterion

Outline

- CIMENT Mesocenter
- System Utilization Metric

2 Monitoring Tool

3 Analysis

- Data Processing
- Resource Utilization Criterion

Oiscussion

CIMENT Mesocenter

Concepts

- Mesocenter, several universities and labs share computational resources.
- Lightweight grid software CiGri.
- Submission of multi-parametric jobs, bag of task, big amount of jobs.
- Based on the submission of Low priority jobs, preemptible called Best-effort jobs.
 - Improve the cluster utilization, by using unused space (free resources).
- Production clusters.
- Various domains : Chemistry, Astronomy, Physics, etc.
- ► Underlying Batch Scheduler is OAR (it could have been Slurm...)

CIGRI problematics

Questions

- Best-Effort jobs seems a good idea, platform resources are highly allocated.
- But is it really a good thing to over-allocate? (bottlenecks?)
- Other optimizations possible?
- We need data from jobs consumptions.
- ► OAR, as SLURM provides an accounting plugin, gives **means**.
- We suspected that consumption means are not enough, we have very long jobs (days).
- Indeed, 30% of the jobs had a std dev over 20%, for CPU consumption.
- ▶ We need finer granularity.

- Metric commonly used to evaluate computational infrastructures utilization.
- Definition : ratio of the computing resources allocated to the jobs over the available resources in the system.
- Downsides : misses information about the computer sub-systems (disk , memory, processor).
- **Jobs resource utilization**.

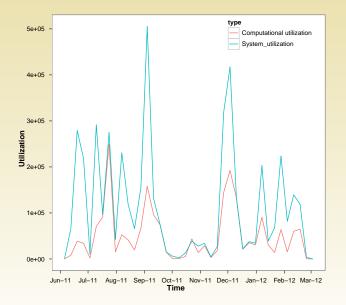


Figure: System Utilization vs Computational Resource Utilization (for normal jobs from one of the CIMENT Clusters)

INRIA - MESCAL

Jobs Resource Utilization

œ

1 Contex

- CIMENT Mesocenter
- System Utilization Metric

2 Monitoring Tool

3 Analysi

- Data Processing
- Resource Utilization Criterion

4 Discussion

Jobs traces

- ▶ The idea is to have a trace of resources consumption per job.
- Different from other monitoring approaches such as Ganglia[2], Nagios[1], etc.
- Job centric monitor.
- ▶ Information about (CPU, memory, IO, Network) consumption.

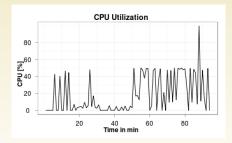


Figure: Job CPU consumption over time

Choices for Tracing Jobs Consumptions

Characteristics

- Independent : No synchronization among the nodes.
- Use of mechanisms supported by most of the batch schedulers.
- ▶ Lightweight (Sampling approach) 0.35% speed down.

Characteristics

- Independent : No synchronization among the nodes.
- Use of mechanisms supported by most of the batch schedulers.
- Lightweight (Sampling approach) 0.35% speed down.

Lightweight approach

- 1 min frequency sampling, to avoid storage overhead and to not interfere with jobs execution.
- Capture not expensive using /proc directory.
- Data processing done off-line.

	Foehn	Gofree
CPU Model	Xeon X5550	Xeon L5640
Nodes	16	28
CPU cores	128	336
Total memory	480 GB	2016 GB
Memory/node	24/48 GB	72 GB
Total storage	7 TB	30 TB
Network	IB DDR	IB QDR
Total Gflop/s	1367.04	3177.6
Buy date	2010-03-01	2011-01-01

	Foehn	Gofree
Capture start	2011-06-01	2011-05-24
Capture months	9	9
Number of jobs	41230	9052
Log Size	2.5 Gb	3.0 Gb
Besteffort jobs	38558	5451
Normal jobs	2672	3601

Outline

Contex

- CIMENT Mesocenter
- System Utilization Metric

2 Monitoring Tool

3 Analysis

- Data Processing
- Resource Utilization Criterion

4 Discussion

Pre-analysis

- Off-line data processing
- Traces Correlation
 - Batch Scheduler and Resource Manager logs (SWF Format)

Standard Workload Format

SWF Format		
Headers comments	Fields	
Version	Job Number	
Computer	Submit Time	
Installation	Wait Time	
Acknowledge	Run Time	
Information	Number of Allocated Processors	
Conversion	Average CPU Time Used	
MaxRecords	Used Memory	
Preemption	Requested Number of Processors	
Unix Start Time	Requested Time	
Time Zone	Requested Memory	
Time Zone String	Status	
Start Time	User ID	
Endtime	Group ID	
MaxNodes	Executable Number	
MaxProcs	Queue Number	
MaxRuntime	Partition Number	
MaxMemory	Preceding Job Number	
AllowOveruse	Think Time form Proceeding Job	
MaxQueues		
Queues		
Queue		
MaxPartitions		
Partitions		
Partition		
Note		

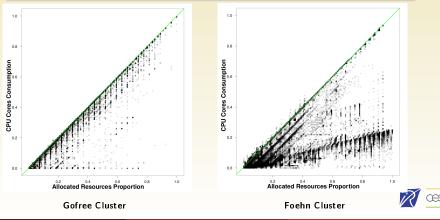
INRIA - MESCAL

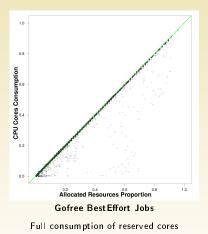
Pre-analysis

- Off-line data processing
- Traces Correlation
 - Batch Scheduler and Resource Manager logs (SWF Format)
 - Jobs resource consumption logs

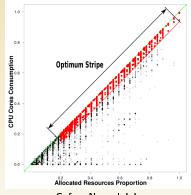
Jobs Resource Consumption Logs

Trace Fields		
Name	Description	
Time	Unix Time Stamp in seconds	
JOB ID	Job id assigned by the batch scheduler	
PID	PID of process that belongs to the job	
Node ID	Provenance of the capture	
Measure	List of measures of the resource consumptions	


Measure (simplified version)		
Name	Description	
command	Name of the binary executed	
memory faults	Number of memory faults and their type	
virtual memory	Virtual memory size	
pages	Pages used by process and their type	
lo rw	Num of bytes read/written from/to the storage layer	
core usage	Core utilization percentage	
net r w	Network Read and Written Bytes	


Resource Utilization Criterion

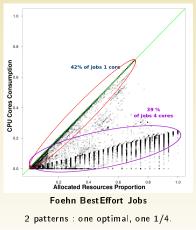
Criterion presentation


- Match Resource Consumption with Resource Allocation
- X axis : allocated resources over available
- Y axis : core consumption in function of X
- Green diagonal : Theoretical optimum, distances from the line = computing power loss
- Density graphs : darker point means denser distribution (alpha=0.1)

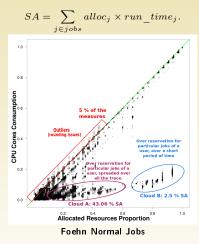
Gofree Cluster

Best Effort jobs are core efficient.

Gofree Normal Jobs


Red stripe : 80% of the values. Linear regression gave a 0.998 slope.

(red stripe : stripe between the optimum and the mean


of the distances from the optimum)

Foehn Cluster

One user with particular needs for memory bandwidth.

2 "low-utilization" clouds.

Outliers (up to 110%) due to /proc roundings

when consumption jitter.

INRIA - MESCAL

Needs not expressible by the user to the batch scheduler?

IO/Memory Bandwidth Constraint

- accept the loss?
- modify batch scheduler?
- bandwidth as a resource?

Outline

Contex

- CIMENT Mesocenter
- System Utilization Metric

2 Monitoring Tool

3 Analysis

- Data Processing
- Resource Utilization Criterion

Discussion

System Instrumentation

- Interesting and at little COSt (our implementation : 0.35% speed-down)
- Need to correlate with other metrics (memory size and bandwidth usage, IO)

Results

- Processor consumption on 2 clusters of same grid can be very different
- Users behaviors impact
- Shows Batch Scheduler request constraint lacks

Future Works

- Characterize jobs consumption patterns
- Learn from past, classify couple <User,Code>
- On-Line tagging of jobs at submission, useful to anticipate IO intensive jobs

Ideas

- SWF : fields for Max Memory, particular user constraint (license, hardware, locality)
- Slurm : plugin for tracing the jobs by sampling

Data available in a git repository

Thank you for your attention

joseph.emeras@imag.fr

Emir Imamagic and Dobrisa Dobrenic.
Grid infrastructure monitoring system based on nagios.
In Proceedings of the 2007 workshop on Grid monitoring, GMW '07, pages 23–28, New York, NY, USA, 2007. ACM.

Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia distributed monitoring system : Design, implementation and experience, 2004.

