
SchedMD LLC
http://www.schedmd.com

High Throughput Computing with SLURM

SLURM User Group Meeting
October 9-10, 2012
Barcelona, Spain

Morris Jette and Danny Auble
[jette,da]@schedmd.com

SchedMD LLC
http://www.schedmd.com

Thanks to

This work is supported by the Oak Ridge National
Laboratory Extreme Scale Systems Center

SchedMD LLC
http://www.schedmd.com

 Historic Perspective

● High Throughput Computing (HTC) was not a priority of
original SLURM developers, so little effort had been
made to optimize SLURM performance

● Typical cluster ran only a few thousand jobs per day
● SLURM throughput (about 120 jobs/second) was

already competitive with other schedulers, so the
potential for additional throughput was unclear

* - Actual results may vary depending upon hardware
and configuration

SchedMD LLC
http://www.schedmd.com

Initial Profiling Results

● Started by using gprof profiling tool to see where time
was being spent in slurmctld and slurmd daemons

● Some time was going to the expected places
● Sorting jobs by priority

● Some surprises
● Functions that are relatively fast, but executed very

frequently took much of the time
● Plugin initialization check: executed for every plugin call
● Time formatting

SchedMD LLC
http://www.schedmd.com

Plugin Initialization Check Logic

● Before ● After

 lock()
 if (already_initialized)
 goto fini;
 /* initialize_plugin */
fini: unlock();
 if (var)
 free(var);
 return;

 if (already_initialized)
 return;
 lock()
 if (already_initialized)
 goto fini;
 /* initialize_plugin */
fini: unlock();
 if (var)
 free(var);
 return;

These functions are
called so frequently that
a subtle change like this
had a substantial effect

SchedMD LLC
http://www.schedmd.com

Unnecessary Time Formatting

● Before ● After

char buf;
make_time_str(time, buf, size);
debug3(“time=%s”, buf);

Avoid time formatting by
default in frequently
used functions,
especially if not typically
used (e.g. debug3).

#ifdef DEBUG_TIME
 char buf;
 make_time_str(time, buf, size);
 debug3(“time=%s”, buf);
#else
 debug3(“time=%u”, time);
#endif

SchedMD LLC
http://www.schedmd.com

Results of Phase 1

● Relatively minor changes to about 20 places in the
SLURM code resulted in 300 percent speedup (from
120 jobs/second to 500 jobs/second)

● Many of these changes are included in SLURM v2.4
and benefit most SLURM configurations

● Remaining bottlenecks are very difficult to parallelize

SchedMD LLC
http://www.schedmd.com

Phase 2: Configuration Specific
Enhancements

● Serial (single CPU) jobs
● Streamlined select/serial plugin
● Compute node “pull” model

● FIFO scheduling

SchedMD LLC
http://www.schedmd.com

New select/serial plugin

● SLURM's “select” plugin selects resources for a job

● Much code is used to select the “best” available resources
(e.g. allocate multiple cores on a single socket rather than
spreading a job across multiple sockets, optimized
network topology, etc.)

● Select/serial is streamlined version of select/cons_res
● Roughly half of the logic has been removed

● If all jobs use only a single processor, the “select” plugin
execution time is measurably reduced, throughput up to
570 jobs per second

SchedMD LLC
http://www.schedmd.com

Batch Job RPC Sequence

slurmctld
daemon

slurmd
daemon

slurmstepd
process

user
application

1: Launch job RPC
3: Terminate job RPC

2: Batch script
complete RPC

4: Epilog complete RPC

Steps 1 & 2 happen on node zero of job allocation
Steps 3 & 4 happen on every node of a job allocation

SchedMD LLC
http://www.schedmd.com

Batch Job “Pull” Model

slurmctld
daemon

slurmd
daemon

slurmstepd
process

user
application

1: Launch job RPC

2: Batch script
complete RPC

This model applies only to serial jobs
Batch script complete RPC sent from slurmstepd to slurmd (instead of slurmctld)
Slurmd executes epilog before notifying slurmctld that the batch script is complete
Response to batch script complete RPC is a new job launch request
4 RPCs reduced to 1 RPC in typical scenario
Throughput up to 600 jobs per second

2A: Batch script
complete RPC
2B: Response is
new launch job

SchedMD LLC
http://www.schedmd.com

FIFO Scheduling

● Eliminate all job sorting logic

● Use simple FIFO list in all scheduling logic

● With all changes, up to 630 jobs per second

SchedMD LLC
http://www.schedmd.com

How Fast SLURM Run?

● Remove all data structure locks
● Jobs, nodes, partitions, etc.
● This will result in data corruption; use for testing only

● Reaches 1000 jobs per second throughput

SchedMD LLC
http://www.schedmd.com

Results

Original SLURM v2.3 120 jobs/second

General logic improvements in SLURM 2.4 500 jobs/second

New select/serial plugin 570 jobs/second

New job “pull” logic 600 jobs/second

Job queuing logic enhancements (FIFO) 630 jobs/second

Without locks (results in memory corruption) 1000 jobs/second

SchedMD LLC
http://www.schedmd.com

Configuration Options

● These options will not be acceptable in all environments

● Purge completed jobs from slurmctld daemon as soon as possible
● MinJobAge=2

● Minimize logging
● SlurmctldDebug=1
● SlurmdDebug=1

● Disable accounting
● AccountingStorageType, JobAcctGatherType, JobCompType

● FIFO scheduling (eliminates priority ordering)
● SchedulerType=sched/builtin

SchedMD LLC
http://www.schedmd.com

Possible Future Enhancements

● Substantial additional speedup with one slurmctld
daemon not likely

● Multiple slurmctld daemons, say one per compute
node, could offer much higher throughput
● Each job submitted to specific compute node
● Schedule each node independently
● Requires all jobs fit entirely within one node
● Job dependencies probably not supported
● Job accounting probably not supported

SchedMD LLC
http://www.schedmd.com

Meta-cluster Model

slurmctld
daemon

slurmd
daemon

Compute Node 1

slurmctld
daemon

slurmd
daemon

Compute Node N

…..

sbatch
command

Submit to one
compute node
based upon PID

squeue
command

Get info from every
compute node

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

