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 Historic Perspective

● High Throughput Computing (HTC) was not a priority of 
original SLURM developers, so little effort had been 
made to optimize SLURM performance

● Typical cluster ran only a few thousand jobs per day
● SLURM throughput (about 120 jobs/second) was 

already competitive with other schedulers, so the 
potential for additional throughput was unclear

* - Actual results may vary depending upon hardware 
and configuration
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Initial Profiling Results

● Started by using gprof profiling tool to see where time 
was being spent in slurmctld and slurmd daemons

● Some time was going to the expected places
● Sorting jobs by priority

● Some surprises
● Functions that are relatively fast, but executed very 

frequently took much of the time
● Plugin initialization check: executed for every plugin call
● Time formatting
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Plugin Initialization Check Logic

● Before ● After

       lock()
       if (already_initialized)
         goto fini;
       /* initialize_plugin */
fini: unlock();
       if (var)
          free(var);
       return;

     if (already_initialized)
          return;
      lock()
      if (already_initialized)
         goto fini;
       /* initialize_plugin */
fini: unlock();
       if (var)
          free(var);
       return;

These functions are 
called so frequently that 
a subtle change like this 
had a substantial effect
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Unnecessary Time Formatting

● Before ● After

char buf;
make_time_str(time, buf, size);
debug3(“time=%s”, buf);

Avoid time formatting by 
default in frequently 
used functions, 
especially if not typically 
used (e.g. debug3).

#ifdef DEBUG_TIME
      char buf;
      make_time_str(time, buf, size);
      debug3(“time=%s”, buf);
#else
      debug3(“time=%u”, time);
#endif
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Results of Phase 1

● Relatively minor changes to about 20 places in the 
SLURM code resulted in 300 percent speedup (from 
120 jobs/second to 500 jobs/second)

● Many of these changes are included in SLURM v2.4 
and benefit most SLURM configurations

● Remaining bottlenecks are very difficult to parallelize
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Phase 2: Configuration Specific 
Enhancements

● Serial (single CPU) jobs
● Streamlined select/serial plugin
● Compute node “pull” model

● FIFO scheduling
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New select/serial plugin

● SLURM's “select” plugin selects resources for a job

● Much code is used to select the “best” available resources 
(e.g. allocate multiple cores on a single socket rather than 
spreading a job across multiple sockets, optimized 
network topology, etc.)

● Select/serial is streamlined version of select/cons_res
● Roughly half of the logic has been removed

● If all jobs use only a single processor, the “select” plugin 
execution time is measurably reduced, throughput up to 
570 jobs per second
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Batch Job RPC Sequence

slurmctld 
daemon

slurmd 
daemon

slurmstepd
process

user 
application

1: Launch job RPC
3: Terminate job RPC

2: Batch script 
complete RPC

4: Epilog complete RPC

Steps 1 & 2 happen on node zero of job allocation
Steps 3 & 4 happen on every node of a job allocation
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Batch Job “Pull” Model

slurmctld 
daemon

slurmd 
daemon

slurmstepd
process

user 
application

1: Launch job RPC

2: Batch script 
complete RPC

This model applies only to serial jobs
Batch script complete RPC sent from slurmstepd to slurmd (instead of slurmctld)
Slurmd executes epilog before notifying slurmctld that the batch script is complete
Response to batch script complete RPC is a new job launch request
4 RPCs reduced to 1 RPC in typical scenario
Throughput up to 600 jobs per second

2A: Batch script 
complete RPC
2B: Response is 
new launch job
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FIFO Scheduling

● Eliminate all job sorting logic

● Use simple FIFO list in all scheduling logic

● With all changes, up to 630 jobs per second
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How Fast SLURM Run?

● Remove all data structure locks
● Jobs, nodes, partitions, etc.
● This will result in data corruption; use for testing only

● Reaches 1000 jobs per second throughput
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Results

Original SLURM v2.3 120 jobs/second

General logic improvements in SLURM 2.4 500 jobs/second

New select/serial plugin 570 jobs/second

New job “pull” logic 600 jobs/second

Job queuing logic enhancements (FIFO) 630 jobs/second

Without locks (results in memory corruption) 1000 jobs/second
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Configuration Options

● These options will not be acceptable in all environments

● Purge completed jobs from slurmctld daemon as soon as possible
● MinJobAge=2

● Minimize logging
● SlurmctldDebug=1
● SlurmdDebug=1

● Disable accounting
● AccountingStorageType, JobAcctGatherType, JobCompType

● FIFO scheduling (eliminates priority ordering)
● SchedulerType=sched/builtin
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Possible Future Enhancements

● Substantial additional speedup with one slurmctld 
daemon not likely

● Multiple slurmctld daemons, say one per compute 
node, could offer much higher throughput
● Each job submitted to specific compute node
● Schedule each node independently
● Requires all jobs fit entirely within one node
● Job dependencies probably not supported
● Job accounting probably not supported
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Meta-cluster Model

slurmctld
daemon

slurmd
daemon

Compute Node 1

slurmctld
daemon

slurmd
daemon

Compute Node N

…..

sbatch
command

Submit to one
compute node
based upon PID

squeue
command

Get info from every
compute node
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